NEHALEM RIVER

FALL CHINOOK SALMON

## ESCAPEMENT INDICATOR PROJECT 1998-2002

CUMULATIVE PROGRESS REPORT

## A report by the Oregon Department of Fish and Wildlife

Section, Chinook Technical Committee Project Numbers: N98-17, N98-16, C99-14, C00-10, C00
11, C00-13, N01-17, and C02-05
Jody White
Hal Weeks
Brian Riggers

June 2003

## TABLE OF CONTENTS

LIST OF FIGURES ..... 3
INTRODUCTION ..... 4
OBJECTIVES ..... 5
STUDY AREA ..... 6
DATA COLLECTION METHODS ..... 8
Mark-Recapture ..... 8
Spawner Surveys ..... 9
Radio Telemetry ..... 14
Estimating Terminal Catch ..... 15
Future Genetic Analyses ..... 17
DATA ANALYSIS METHODS. ..... 17
Spawner Escapement Estimates ..... 17
Radio Telemetry ..... 19
Creel Data Analysis ..... 20
RESULTS ..... 22
Spawner Escapement Estimates ..... 22
Spawning ground survey calibrations ..... 27
Age Composition ..... 41
Radio Telemetry - Habitat Use and Spawning Ground Residence Time ..... 41
Terminal Harvest Estimates ..... 41
DISCUSSION ..... 43
ACKNOWLEDGMENTS ..... 44
REFERENCES ..... 44
APPENDIX A ..... 47
APPENDIX B ..... 48

## List of Figures

Fig. 1. Nehalem River watershed map with capture sites noted.
Fig 2.
Fig 3A. Temporal distribution of fall chinook tagging in the Nehalem River, 2000 2001.

Fig 3B. Temporal distribution of fall chinook tagging in the North Fork Nehalem River, 1998-2001

## List of Tables

Table 1. Nehalem River fall chinook survey reaches.
Table 2. Nehalem River basin fall chinook spawner escapement estimates.
Table 3. Precision and bias estimates for Nehalem River basin spawner escapement estimates.

Table 4. Preliminary expansion factors for Nehalem River fall chinook spawning ground surveys.

Table 5. Summary of Nehalem River basin fall chinook standard survey expansion coefficients of variation.

Table 6. Age structure of Nehalem River fall chinook.
Table 7. Distribution of fall chinook spawning in mainstem and tributary habitat strata as informed by radio telemetry.

Table 8. Estimated recreational catch of fall chinook in the Nehalem River basin, 1987 2002.

## INTRODUCTION

The Oregon Department of Fish and Wildlife (ODFW) is conducting a multi-year, multibasin study designed to develop methods that provide reliable estimates of fall chinook salmon (Oncorhynchus tshawytscha) spawner escapements for Oregon coastal streams. Chinook salmon originating in Oregon coastal rivers north of Elk River are northmigrating and vulnerable to fisheries off of southeast Alaska and British Columbia. The U.S. - Canada Pacific Salmon Treaty established the Pacific Salmon Commission (PSC) to provide a framework to manage salmon fisheries. The 1999 modification to the Treaty defines an aggregate abundance based management (AABM) regime whereby harvests will vary with abundance. A broader goal of this treaty is to restore and rebuild production of naturally spawning chinook (PSC 1997).

In order to accomplish these goals and monitor the rebuilding of specific chinook stocks, the PSC's Chinook Technical Committee (CTC) assesses three elements for each stock: 1) spawner escapement level, 2) fishery harvest and exploitation rate, and 3) subsequent production from spawners. Data on different chinook stocks provided by PSC participants (Canada and U.S. state, federal, and tribal agencies) are used in the PSC's Chinook Model that generates information on yearly pre- and post-season cohort abundance estimates. These estimates are used by the PSC to monitor the relative health of chinook stocks under PST jurisdiction and to set ocean harvest levels.

Currently, Oregon coastal chinook stock assessment information comes from a standard spawner survey program, a voluntary angler-returned catch card system, and two exploitation rate indicator stocks. These traditional monitoring programs do not supply the CTC with adequate information that is required for the management and rebuilding of Oregon's coastal chinook stocks. ODFW has conducted standard surveys for more than 50 years to monitor the status of chinook stocks along coastal Oregon (Jacobs et al. 2000). A total of 56 standard index spawner surveys ( 45.8 miles) are monitored throughout 1,500 stream miles on an annual basis to estimate peak escapement levels and track trends of north-migrating stocks. Although counts in these standard surveys may be sufficient to index long-term trends of spawner abundance, they are considered inadequate for deriving dependable annual estimates of spawner escapement. There are many weaknesses associated with using standard surveys as a means to estimate fall chinook escapement. These surveys were not selected randomly and can not be considered representative of coast-wide spawning habitat. Also, fall chinook are known to spawn extensively in mainstem reaches and large tributaries, which are not conducive to visual surveys. To provide estimates of escapements, index counts must be calibrated to known population levels. Obtaining accurate estimates of fall chinook spawner density in these mainstem reaches is extremely difficult. Typically, these areas exhibit wide variations in stream flow and turbidity that create difficult and sometimes dangerous survey conditions and that can result in unreliable visual counts. Alternative methods will be employed and a more reliable estimate may be possible by way of calibrated carcass counts.

The goal of this project is to develop precise estimates of spawner escapement in the North Fork and mainstem Nehalem River basins, and to identify survey indices that can be used to estimate spawner abundance for the NOC and MOC stock aggregates. The North Fork Nehalem River and the South Fork Coos River were originally selected by the CTC for feasibility studies of escapement and calibration efforts. The North Fork Nehalem was studied from 1998 through 2001, with disappointing results. Primary effort shifted to the mainstem Nehalem in 2000. In each case, a mark-recapture experiment was being conducted to obtain an estimate of fall chinook populations in each river. Various survey indices are being used to estimate spawner abundance in tributary and mainstem spawning habitat including foot and boat surveys to obtain live fish counts and carcass counts. All or a combination of these methods will be assessed to provide a chinook salmon spawner escapement to coastal Oregon rivers. Radio-telemetry was used to identify the distribution of chinook spawners in the Nehalem basin in 2000 and 2001 between mainstem and tributary spawning strata which may contribute to the tuning of indices of abundance. A statistical creel survey is being conducted in the Nehalem Basin as a means of calibrating Oregon's angler-returned catch card estimates of recreational salmon take in rivers. Work in the mainstem Nehalem will continue through the 2003 field season.

## OBJECTIVES

1. Estimate the total escapement of adult chinook from ocean fisheries into the Nehalem River within $\pm 25 \%$ of the true value $95 \%$ of the time and to estimate the age specific proportions of the escapement within $\pm 5 \%$ of the true value $95 \%$ of the time. Specific tasks that must be completed to achieve the overall objective are:
a) Estimate the spawning escapement of chinook salmon in North Fork Nehalem River (1998-2001) and the mainstem Nehalem River (2000-2002) such that the estimate is within $\pm 25 \%$ of the true value $95 \%$ of the time, and estimate age/sex specific proportions of that spawning escapement such that the estimate is within $\pm 5 \%$ of the true value $95 \%$ of the time.
b) Estimate the sport harvest of chinook salmon in Nehalem River and Bay such that the estimate is within $\pm 25 \%$ of the true value $95 \%$ of the time, and estimate age/sex specific proportions of that harvest such that the estimates are within $\pm$ $5 \%$ of the true value $95 \%$ of the time.
2) Determine the appropriate spawner survey methodology that can be implemented at the aggregate level to estimate chinook spawner abundance in the other five Chinook production river systems in the NOC, by measuring several indexes of spawner abundance using ODFW's standard spawning survey methods.
3) Estimate adult chinook salmon spawner distribution among mainstem and tributary spawning areas by radio telemetry (2000 and 2001 only).

## STUDY AREA

The Nehalem River is one of the eight chinook production river systems in the North Coast aggregate with a mainstem length of over 120 miles (Figure 1). The river is located entirely in the Oregon coastal mountain range with a maximum watershed elevation of $3,510 \mathrm{ft}$. Average annual river discharge is 2,672 cubic feet per second (cfs) and historically has ranged from $34-70,300 \mathrm{cfs}$. Peak discharges typically occur during the winter rainy season from November until February. Upland areas of the watershed are dominated by commercial timberlands and floodplains are predominately pastureland.


Figure 1. Map of the Nehalem River watershed showing capture and tagging locations on the North Fork and mainstem.

The Nehalem chinook stock has been labeled as a fall run (Nicholas and Hankin 1988). Most observed fall chinook spawning peaks in November. Oregon coastal fall chinook are considered ocean-type chinook and are a late-maturing stock with females maturing principally at age 5 and males principally at age 4 (Nicholas and Hankin 1988). However, the fact that chinook start entering Nehalem Bay in May and are found spawning as early as September in the mainstem as well as headwater tributaries suggests that a smaller component of spring/summer run fish is also present (Germond and Boechler 1988).

Historically (1950-1999) the only assessment of run-size was by means of visual surveys taken on foot at nonrandom "standard" spawning sites. Counts of live and dead chinook are used to generate a spawner density index (peak fish/mile). We do not know the relationship of this index to the actual escapement. Depending on the year, from 1.0 to 5.2 miles have been surveyed. Hodges and Jacobs (1997) and Riggers (1999, per. comm.) have estimated a total of 121 miles of spawning habitat. Zhou and Williams (1999) used this historic data and several untested assumptions about the relationship of the peak counts and the spawner abundance to analyze the stock- recruitment relationship from 1967-1996. The resultant production curve allowed the authors to estimate an interim biologically based escapement goal required by the new agreement. The MSY goal was estimated as 6,989 spawners ( $90 \%$ CI: 5,789-9,405). Figure 2 illustrates these historic escapement estimates.


Figure 2. Estimated escapements of fall chinook in Nehalem River from 1967-1996 from Zhou and Williams (1999).

Nicholas and Hankin (1988) summarized commercial harvest data from fish-packing plants from 1896 until commercial harvest was eliminated in the early 1950's.
Commercial harvests ranged from 8,000-18,000 fish. Reliable freshwater recreational harvest data before 1964 is limited.

Compared to other coastal rivers, the Nehalem River chinook stock has had minimal hatchery influence (Wallis 1961, Nicholas and Hankin 1988). Seventy-six hatchery releases ( 36 were spring run stocks) over ninety years have ranged from 15,600 to $1,460,000$ chinook juveniles. All but three releases occurred before 1952. All fish were off-site hatchery releases and most were fingerlings or of unknown age. Three smolt releases of Trask River stock occurred in the early 1970's.

## DATA COLLECTION METHODS

## Mark-Recapture

Chinook spawner escapement was estimated using a two-event mark-recapture experiment.

In the North Fork Nehalem, trapping was conducted at a fish ladder that was designed to aid with fish passage around a bedrock falls. The trap is located approximately 14 miles upriver from the mouth, and about eight miles above head of tide. Chinook salmon were trapped, tagged and released from mid-September through mid-November at the North Fork Nehalem River trap. In 2000 and 2001, a weir was constructed at approximately river mile 8. In the mainstem Nehalem, chinook salmon were captured through tangle netting, and at a weir located in Mohler at approximately river mile 12. Through the course of this study, we adjusted our capture and marking efforts to begin in August in order to capture and mark the entire run of fall chinook. (Fig 3)


Figure 3A. Timing of fall chinook tagging in the mainstem Nehalem, 2000-2002


Figure 3B. Timing of fall chinook tagging in the North Fork Nehalem, 1998-2001.

Tagging occurred on a daily basis to minimize the the effect on upstream migration was delayed. Trapped salmon were placed into a hooded cradle for tagging and inspection. Using a Dennison Mark II tagging gun, an anchor tag was placed on the left side of the dorsal. Tags displayed a unique number and were of a neutral color, as not to bias recovery of tagged fish. Each anchor-tagged fish was given a left opercle mark with a paper punch. This double identification was applied to negate tag loss. Fork length, sex, tag number, and presence of fin clips were recorded before release. A scale sample was taken from each chinook for later age analysis. Beginning in 2002, we discontinued the use of numbered anchor tags. Rather, fish were marked with operculum punches and clipping the right axillary appendage at upper river site only). Location and number (one or two) of punches served to identify the week of capture and marking. After tagging each fish was allowed to recover in the aerated live well and subsequently released to continue its upstream migration.

## Spawner Surveys

The second event of the two event mark-recapture experiment involves actively locating chinook carcasses upstream of the marking sites. Spawning ground surveys were conducted to recover carcasses and record live counts. Carcasses were sampled for length, sex, scales, tag identification number, and operculum punch. Surveys designated as part of the random survey design were conducted on a weekly basis. The survey design consisted of a random selection of survey reaches within two strata, mainstem and tributary. Surveyors collected basic biological and physical data including live counts and carcasses counts. Each carcass was sampled for scales, length, and sex. Sampled carcasses were marked to prevent re-sampling. All of these surveys were performed according to ODFW spawner survey protocol (ODFW 1998). Surveys were walked in an upstream direction and at a pace adapted to weather and viewing conditions. Surveys were not conducted if the bottom of riffles could not be seen. Surveyors worked in pairs and each wore polarized glasses to aid in location and identification of live fish.

The tributary and mainstem strata were determined according to ODFW coho spawner distributions. For the purpose of this study, tributary strata were defined as those stream areas that supports habitat that is conducive to coho (Oncorhynchus kisutch) spawning as documented in the ODFW database of coho spawning distribution (Jacobs and Nickelson 1998). The random survey design in tributary reaches incorporated all coho surveys selected through the Environmental Monitoring and Assessment (EMAP) selection process as part of the monitoring associated with the Oregon Plan for Salmon and Watersheds (Firman 1999) that overlapped with chinook spawning habitat. Additional surveys were selected randomly to increase the sampling rate.

Mainstem strata for the two calibration sites were designated as those areas that were downstream of coho spawner distribution and included all river and tributary areas upstream of tidewater. Surveys were conducted on foot in mainstem strata when flows permitted safe navigation. Surveyors floated these mainstem surveys in inflatable kayaks during periods of higher flows. Mainstem surveys were conducted on a regular basis as flow and visibility allowed. Four mainstem surveys totaling 4.9 miles and equating to $100 \%$ of the available habitat were conducted above the trap on the North Fork Nehalem River in 1998 through 2000. (Table 1). Kayaks were used in order to access and search both riverbanks. Surveyors searched all areas of the banks, pools, and other low energy areas where carcasses are likely to be deposited. Six surveys totaling 5.2 miles and equating to approximately $29 \%$ of the available tributary habitat were conducted above the trap on the North Fork Nehalem River (Table 1).

Table 1. List of standard and random fall chinook surveys conducted in the North Fork Nehalem and mainstem Nehalem River during this project. Start and endpoints designates reach breaks and are not necessarily surveys boundaries. Lengths are in miles.

Table 1A. Nehalem Basin Standard Surveys Conducted Annually

| Sub-basin | Reach | Reach ID | Miles |
| :---: | :---: | :---: | :---: |
| Mainstem | Cook Crk | 25907 | 1 |
|  | Cronin Crk | 25959 | 1 |
|  | Humbug Crk | 25967 | 1 |
|  | E. Humbug Crk | 25980 | 1.2 |
| Salmonberry | Salmonberry R | 25931 | 0.5 |
| North Fork | Soapstone Crk | 25864 | 0.7 |

Table 1B. Randomly selected surveys conducted in the North Fork Nehalem River.

| Location | Reach | Start | End | Segment | Length |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nehalem River |  |  |  |  |  |
| Mainstem: | Nehalem R, N |  |  |  |  |
|  | Fk | Sally Cr | Gods Valley Cr | 1 | 1.40 |
|  | Nehalem R, N |  |  |  |  |
|  | Fk <br> Nehalem R, N | Gods Valley Cr | Lost Cr | 1 | 0.97 |
|  | Fk | Lost Cr | Sweet Home Cr | 1 | 0.63 |
|  | Nehalem R, N |  |  |  |  |
|  | Fk | Lost Cr | Sweet Home Cr | 2 | 0.65 |
|  | Nehalem R, N |  |  |  |  |
|  | Fk | Sweet Home Cr | Fall Cr | 1 | 1.20 |
| Tributary: | Lost Cr. | Mouth | Head Waters | 1 | 1.00 |
|  | Sweet Home Cr. <br> Nehalem R, N | Mouth | Sweet Home Cr Nehalem R, N | 1 | 0.90 |
|  | Fk | Fall Cr. | Fk | 1 | 1.25 |
|  | Nehalem R, N |  | Nehalem R, N |  |  |
|  | Fk | Nehalem R N Fk | Fk | 1 | 0.95 |
|  | Nehalem R, N |  | Nehalem R, |  |  |
|  | Fk | Nehalem R N Fk | Little | 1 | 0.80 |
|  | Nehalem R, N |  | Nehalem R, |  |  |
|  |  | Nehalem R, Little | Little | 2 | 0.26 |

Table 1C. Nehalem Random Fall Chinook Surveys 2000

- 2002

Random Surveys Conducted in 2000

| Chinook Habitat Type | Reach ID | Reach | Start | End | Length (miles) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mainstem | 25916 | Nehalem R | Cook Cr | Lost Cr | 1.1 |
| Mainstem | 25922 | Nehalem R | Helloff Cr | Bastard Cr | 1.9 |
| Mainstem | 25926 | Nehalem R | Snark Cr | Salmonberry R | 3 |
| Mainstem | 25927 | Salmonberry R | Mouth | Hatchery Cr | 0.3 |
| Mainstem | 25931 | Salmonberry R | Buick Canyon | Belfort Cr <br> Salmonberry R, | 0.5 |
| Mainstem | 25939 | Salmonberry R | Tunnel Cr <br> Salmonberry R, S | S Fk | 1.2 |
| Mainstem | 25943 | Salmonberry R | Fk | Bathtub Cr | 0.4 |
| Mainstem | 25949 | Salmonberry R | Belding Cr | Kinney Cr | 0.96 |
| Mainstem | 25956 | Nehalem R | Salmonberry R | Cronin Cr | 1.9 |
| Mainstem | 25962 | Nehalem R | Cronin Cr | Trib 4 | 1.9 |
| Mainstem | 25964 | Nehalem R | Spruce Run Cr | George Cr | 3.2 |
| Mainstem | 25966 | Nehalem R | George Cr | Humbug Cr | 1.5 |
| Mainstem | 25986 | Nehalem R | Humbug Cr | Quartz Cr | 1.8 |
| Mainstem | 25996 | Nehalem R | Cow Cr | Klines Cr | 0.5 |
| Mainstem | 25998 | Nehalem R | Klines Cr | Moores Cr | 0.6 |
| Mainstem | 26009 | Fishhawk Cr | Mouth | Beneke Cr <br> Little Fishhawk | 0.7 |
| Mainstem | 26019 | Fishhawk Cr | Beneke Cr | Cr | 1.5 |
| Mainstem | 26026 | Nehalem R | Fishhawk Cr | Slaughters Cr | 1.4 |
| Mainstem | 26028 | Nehalem R | Strum Cr | Squaw Cr | 0.7 |
| Mainstem | 26056 | Nehalem R | Calvin Cr | Ford Cr | 1.5 |
| Mainstem | 26074 | Nehalem R | Cedar Cr | Oak Ranch Cr | 0.5 |
| Mainstem | 26082 | Nehalem R | Crooked Cr | Cook Cr | 0.4 |
| Mainstem | 26097 | Rock Cr | Bear Cr | Ivy Cr | 1.5 |
| Mainstem | 26097 | Rock Cr | Bear Cr | Ivy Cr | 1 |
| Mainstem | 26103 | Rock Cr | Selder Cr | Fall Cr | 1.6 |
| Mainstem | 26105 | Rock Cr | Fall Cr | Ginger Cr | 2.5 |
| Mainstem | 26130.5 | Nehalem R | Rock Cr | Beaver Cr | 2.1 |
| Mainstem | 26136 | Nehalem R | Cedar Cr | Weed Cr | 1.3 |
| Tributary | 25889 | Foley Cr | E Foley Cr | Crystal Cr | 1.2 |
| Tributary | 25901 | Anderson Cr | Mouth | Headwaters | 1.12 |
| Tributary | 25911 | Cook Cr | Hanson Cr | Cook Cr, S Fk | 0.86 |
| Tributary | 25980 | E Humbug Cr | Mouth | Headwaters | 1.18 |
| Tributary | 26012 | Beneke Cr | Gilmore Cr | Walker Cr | 1 |
| Tributary | 26020 | Little Fishhawk Cr | Mouth | Headwaters | 2.3 |
| Tributary | 26021 | Fishhawk Cr | Little Fishhawk Cr | Alder Cr | 0.9 |


| Chinook Habitat Type | Reach ID | Reach | Start | End | Length (miles) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mainstem | 25903 | Cook Cr | Mouth | Dry Cr | 1.1 |
| Mainstem | 25924 | Nehalem R | Bastard Cr | Snark Cr | 1 |
| Mainstem | 25927 | Salmonberry R | Mouth | Hatchery Cr | 0.3 |
| Mainstem | 25929 | Salmonberry R | Hatchery Cr | Buick Canyon | 1.2 |
| Mainstem | 25931 | Salmonberry R | Buick Canyon | Belfort Cr | 0.5 |
| Mainstem | 25933 | Salmonberry R | Belfort Cr | Preston Cr | 0.7 |
| Mainstem | 25935 | Salmonberry R | Preston Cr <br> Salmonberry R, S | Tank Cr | 1.2 |
| Mainstem | 25943 | Salmonberry R | Fk <br> Salmonberry R, N | Bathtub Cr | 0.4 |
| Mainstem | 25947 | Salmonberry R | Fk | Belding Cr | 1.1 |
| Mainstem | 25949 | Salmonberry R | Belding Cr | Kinney Cr | 0.96 |
| Mainstem | 25966 | Nehalem R | George Cr | Humbug Cr | 1.5 |
| Mainstem | 25986 | Nehalem R | Humbug Cr | Quartz Cr | 1.8 |
| Mainstem | 25992 | Nehalem R | Osweg Cr | George Cr | 0.5 |
| Mainstem | 26026 | Nehalem R | Fishhawk Cr | Slaughters Cr | 1.4 |
| Mainstem | 26026.3 | Nehalem R | Slaughters Crk | Crawford Crk | 1.5 |
| Mainstem | 26034 | Nehalem R | Northrup Cr | Sager Cr | 2.4 |
| Mainstem | 26036 | Nehalem R | Sager Cr | Louisgnot Cr | 1.5 |
| Mainstem | 26038 | Nehalem R | Louisgnot Cr | Grub Cr | 1 |
| Mainstem | 26038.7 | Nehalem R | Grub Cr | Deep Cr | 1.9 |
| Mainstem | 26044 | Nehalem R | Deep Cr | Fishhawk Cr | 2.6 |
| Mainstem | 26066 | Nehalem R | Battle Cr | Deer Cr | 0.7 |
| Mainstem | 26082 | Nehalem R | Crooked Cr | Cook Cr | 0.4 |
| Mainstem | 26094 | Nehalem R | Nehalem R, E Fk | Knickerson Cr | 1.7 |
| Mainstem | 26094 | Nehalem R | Nehalem R, E Fk | Knickerson Cr | 1.4 |
| Mainstem | 26094 | Nehalem R | Nehalem R, E Fk | Knickerson Cr | 0.75 |
| Mainstem | 26094.7 | Nehalem R | Knickerson Cr | Coon Cr | 1.7 |
| Mainstem | 26097, seg 3 | Rock Cr | Bear Cr | Ivy Cr | 1.2 |
| Mainstem | 26097, seg 4 | Rock Cr | Bear Cr | Ivy Cr | 2.4 |
| Mainstem | 26097, seg 7 | Rock Cr | Bear Cr | Ivy Cr | 0.91 |
| Mainstem | 26136 | Nehalem R | Cedar Cr | Weed Cr | 1.3 |
| Mainstem | 26136.7 | Nehalem R | Weed Cr | Clear Cr | 1 |
| Tributary | 25889 | Foley Cr | E Foley Cr | Crystal Cr | 1.2 |
| Tributary | 25901 | Anderson Cr | Mouth | Headwaters | 1.12 |
| Tributary | 25917 | Lost Cr | Mouth | Headwaters | 1.14 |
| Tributary | 25919 | Fall Cr | Mouth | Headwaters | 0.98 |
| Tributary | 26001 | Buster Cr | Mouth | Little Rock Cr | 1 |
| Tributary | 26012 | Beneke Cr | Gilmore Cr | Walker Cr | 1 |

Random Fall Chinook
Surveys Conducted in 2002

| Chinook Habitat Type | Reach ID | Reach | Start | End | Length (miles) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mainstem | 25902 | Nehalem R | Anderson Cr | Cook Cr | 1.3 |
| Mainstem | 25903 | Cook Cr | Mouth | Dry Cr | 1.1 |
| Mainstem | 25916 | Nehalem R | Cook Cr | Lost Cr | 1.1 |
| Mainstem | 25920 | Nehalem R | Fall Cr | Helloff Cr | 1.1 |
| Mainstem | 25924 | Nehalem R | Bastard Cr | Snark Cr | 1 |
| Mainstem | 25927 | Salmonberry R | Mouth | Hatchery Cr | 0.3 |
| Mainstem | 25929 | Salmonberry R | Hatchery Cr | Buick Canyon | 1.2 |
| Mainstem | 25933 | Salmonberry R | Belfort Cr | Preston Cr | 0.7 |
| Mainstem | 25935 | Salmonberry R | Preston Cr | Tank Cr <br> Salmonberry R, | 1.2 |
| Mainstem | 25939 | Salmonberry R | Tunnel Cr | S Fk | 1.2 |
| Mainstem | 25956 | Nehalem R | Salmonberry R | Cronin Cr | 1.9 |
| Mainstem | 25962 | Nehalem R | Cronin Cr | Trib 4 | 1.9 |
| Mainstem | 25964 | Nehalem R | Spruce Run Cr | George Cr | 3.2 |
| Mainstem | 25966 | Nehalem R | George Cr | Humbug Cr | 1.5 |
| Mainstem | 25986 | Nehalem R | Humbug Cr | Quartz Cr | 1.8 |
| Mainstem | 25990 | Nehalem R | Quartz Cr | Osweg Cr | 1 |
| Mainstem | 25994 | Nehalem R | George Cr | Cow Cr | 1 |
| Mainstem | 26000 | Nehalem R | Moores Cr | Buster Cr | 1.3 |
| Mainstem | 26008 | Nehalem R | Buster Cr | Fishhawk Cr | 1.5 |
| Mainstem | 26026 | Nehalem R | Fishhawk Cr | Slaughters Cr | 1.4 |
| Mainstem | 26032 | Nehalem R | Squaw Cr | Northrup Cr | 2.5 |
| Mainstem | 26036 | Nehalem R | Sager Cr | Louisgnot Cr | 1.5 |
| Mainstem | 26038 | Nehalem R | Louisgnot Cr | Grub Cr | 2.3 |
| Mainstem | 26044 | Nehalem R | Deep Cr <br> Unnamed Trib, | Fishhawk Cr | 2.6 |
| Mainstem | 26054.4 | Nehalem R | Nehalem R | Adams Cr | 0.5 |
| Mainstem | 26054.8 | Nehalem R | Adams Cr | Calvin Cr | 1.3 |
| Mainstem | 26062 | Nehalem R | Lundgren Cr | Battle Cr | 1.9 |
| Mainstem | 26070 | Nehalem R | Deer Cr | Gus Cr | 0.8 |
| Mainstem | 26070 | Nehalem R | Deer Cr | Gus Cr <br> Nehalem R, E | 1.9 |
| Mainstem | 26084 | Nehalem R | Cook Cr | Fk | 2.2 |
| Mainstem | 26094 | Nehalem R | Nehalem R, E Fk | Knickerson Cr | 1.7 |
| Mainstem | 26094 | Nehalem R | Nehalem R, E Fk | Knickerson Cr | 1.4 |
| Mainstem | 26094.7 | Nehalem R | Knickerson Cr | Coon Cr | 1.7 |
| Mainstem | 26097, seg 4 | Rock Cr | Bear Cr | Ivy Cr | 2.4 |
| Mainstem | 26097, seg 7 | Rock Cr | Bear Cr | Ivy Cr | 0.91 |
| Tributary | 25889 | Foley Cr | E Foley Cr | Crystal Cr <br> Foley Cr, Trib | 1.2 |
| Tributary | 25893 | Foley Cr | Dry Cr | Q | 0.34 |


| Tributary | 25901 | Anderson Cr | Mouth | Headwaters | 1.12 |
| :--- | :---: | :--- | :--- | :--- | :---: |
| Tributary | 25907 | Cook Cr | Harliss Cr | Piatt Canyon | 1 |
| Tributary | 25915 | Cook Cr | Cook Cr, E Fk | Hoevett Cr | 0.66 |
| Tributary | 25917 | Lost Cr | Mouth | Headwaters | 1.14 |
| Tributary | 25931 | Salmonberry R | Buick Canyon | Belfort Cr | 0.5 |
| Tributary | 25958 | Cronin Cr, N Fk | Mouth | Headwaters | 0.54 |
| Tributary | 25959 | Cronin Cr | Cronin Cr, N Fk | Cronin Cr, M |  |
| Tributary | 25967 | Humbug Cr | Mouth | Cedar Cr | 0.88 |
| Tributary | 25975 | Humbug Cr | Big Cr | Alder Cr | 1.18 |
| Tributary | 25980 | E Humbug Cr | Mouth | Headwaters | 1.18 |
| Tributary | 25985 | W Humbug Cr | Beaver Cr | Wrib A | 1 |
| Tributary | 26010 | Beneke Cr | Mouth | Gilmore Cr | 1.15 |
| Tributary | 26012 | Beneke Cr | Gilmore Cr | Walker Cr | 1 |
| Tributary | 26024 | Hamilton Cr | Mouth | Headwaters | 1.14 |
| Tributary | 26024 | Hamilton Cr | Mouth | Headwaters | 0.86 |
| Tributary | 26107 | Rock Cr | Ginger Cr | Martin Cr | 1.08 |
| Tributary | 26107 | Rock Cr | Ginger Cr | Martin Cr | 0.98 |
| Tributary | 26111 | Rock Cr | Weed Cr | Olson Cr | 0.39 |
| Tributary | 26111.9 | Rock Cr | Olson Cr | Rock Cr, N Fk | 1.08 |
| Tributary | 26141 | Wolf Cr | Mouth | Wolf Cr, N Fk | 1.3 |

## Radio Telemetry

Adult fall chinook salmon in the mainstem Nehalem were radio tagged in 2000 and 2001 to understand spawner distribution between mainstem and tributary habitat strata. Radio-tagging was conducted in conjunction with the first capture event of the mark-recapture experiment. Transmitters were placed into the esophagus of each adult without the use of anesthetics and then released. Fish were selected by a systematic sample with a random start. Only healthy fish were tagged.

We used seven-volt, digitally encoded Lotek $\square$ radio transmitters. Each transmitter weighs 13 g in water and is 16 X 83 mm in dimensions with a 30 cm whip antennae and a battery life of 265 days. Since some of the transmitters had already been used, the expected remaining battery life varied from 100-258 days depending on the transmitter's use history. Transmitters used six channels (MHz), 9 (149.480), 10 (149.500), 14 (149.580), 18 (149.660), 21 (149.720), and 22 (149.740). Each frequency consisted of multiple codes, so that each transmitter had a unique identifier.

Tracking methods was done using three fixed stations to record migration timing - one at the mouth of Humbug Creek, one at the mouth of Deep Creek, and the third at a private residence in Vernonia. At approximately two week intervals, one surveyor drove the river basin locating fish and documenting the extent of upstream movement with a GPS unit. One day of aerial tracking was accomplished in cooperation with the Oregon State Police.

## Estimating Terminal Catch

## Creel Survey Design

Roving-access and roving-roving survey designs were employed depending on geographic area and fishing method (Pollock et al. 1994). For the roving access point survey, anglers that completed fishing were interviewed as they leave a boat landing or marina and angling effort was determined from the total number of anglers that left the sampled access point during the day. Access point surveys are appropriate for areas with only one or two access points and effort is determined by using data generated from interviews during the sampling period as opposed to an instantaneous measure used in a "roving" survey. In roving surveys, a surveyor move or "rove" through a fishing area making angler or boat counts to determine effort (pressure counts) after which they conduct angler interviews. Roving-access surveys are used when most anglers are concentrated at numerous, known locations (e.g. marinas) and anglers are interviewed as they leave an area once fishing is completed. However, with roving-roving style surveys, anglers are not concentrated

Catch Areas for the 2001-2003 Nehalem Bay and River Creel Project.

| Catch Area | Description |
| :--- | :--- |
| 1 - Ocean | An "area" within 1 mile of the mouth of the bay that lies <br> outside an imaginary line drawn perpendicular across the <br> west ends of the jetties. |
| 2 - Lower Nehalem Bay | The bay area from a line perpendicular across the west end of <br> the jetties up to a line perpendicular across the bay at the <br> State Park Boat Ramp. |
| 3 - Upper Nehalem Bay | A line perpendicular across the bay at the State Park Boat <br> Ramp up to and including the first visible portion of the <br> North Fork Nehalem River. |
| 4 - Tidewater | The mainstem Nehalem River from an imaginary line drawn <br> across the river just upstream of the North Fork mouth <br> upstream to the Roy Creek Bridge. |
| 5 - Mainstem below Falls | Nehalem River from the Roy Creek Bridge upstream to the <br> base of the Nehalem River Falls. |
| 6 - Mainstem above Falls | All areas open to chinook fishing upstream of the Nehalem <br> River Falls |

at known locations (bank anglers) and a surveyor moves through the fishery interviewing anglers while they are still fishing.

The surveys were stratified by catch area, month, day (weekend, weekday), and angler type (bank or boat). Anglers were further divided into two groups, private and guided anglers, and post-stratified if catch rates were found to differ. Angler interviews included the number of hours fished, number of anglers in the boat or on shore, the number of salmonids caught or released (by species), and residency of the angler. All data was entered into hand-held electronic dataloggers. Fish checked were sampled for scales, length measured, sex identified, and the number and types of fin marks noted. If an adipose fin is missing a "detection wand" will be used to determine if a coded wire tag is present. If present, the snout will be removed for future tag decoding.

Nehalem Bay and Tidewater (Catch Areas 1-4)

A roving-access creel survey was used for all bay and tidewater locations. Access points were sampled proportionally to the monthly effort observed at each landing in 1998-1999. Surveyors traveled a predetermined schedule of wait and travel time, with access points randomly chosen, moving between the eight access points interviewing anglers. The sampling schedule will allow each access point to be sampled proportional to the amount of angling effort. Amount of effort per access point was calculated from interview data gathered in 1998-2000.

Two surveyors interviewed boat anglers as they return from fishing. To alleviate problems with differing effort due to time of day and tidal cycles, each day will be surveyed in its entirety. At each location, all boats returning to the marina were interviewed if possible. If large numbers of boats return to the dock and all cannot be interviewed, the surveyor interviewed a systematic random sample. Because the pressure counts recorded total number of boats in each catch area, all boats regardless of target species or activity were interviewed. If a contacted boat has fished for multiple fish types (e.g. salmon and crabbing or bottom fishing), two interviews are completed, one for the salmon angling and an additional one for non-salmon activities. Similarly, if a single boat fished multiple areas, multiple interviews are completed - one interview for each area fished.

Fishing effort in Catch Areas 1-4 is estimated by counting boats from several vantage points around the bay. Pressure counts typically take less than 30 minutes to complete and are considered instantaneous. Four or five pressure counts, depending on time of year, will be recorded throughout the day at assigned three hour time intervals. Boats in moorage and kayaks are not included in the count.

## Mainstem Nehalem River (Catch Areas 5-6)

Both boat and bank anglers were interviewed on the mainstem Nehalem below Nehalem River Falls (Catch Area 5). Surveys began in early to mid-August, depending on water conditions and angling effort. One surveyor began sampling the mainstem Nehalem River in late-August. Historically, riverine angling effort is insignificant until water flows increase (usually in September) and large numbers of fish move into the river. Each surveyor worked four, ten-hour days a week, two weekend days and two-week days. A day was stratified into an AM shift and a PM shift. AM shifts began at 6:00 and ended at 4:00 and PM shifts were from 11:00 9:00. AM shifts were sampled at twice the rate as PM shifts.

For bank anglers, a roving-roving style survey was used. A surveyor moved through Catch Area 5 (including the shore areas just below the Roy Creek Bridge in Catch Area 4) randomly interviewing anglers. Angling effort or pressure counts took place at three intervals depending on day length by driving the mainstem and Andersen Creek roads and counting all people fishing. Pressure counts consisted of counting all cars located in the catch area that are parked in locations used by anglers. Pressure counts typically take less than 45 minutes and are considered instantaneous. Once the pressure count is complete, the surveyor interviewed anglers until the next scheduled pressure count. Interviews consisted of the same information gathered in the boat surveys. However, a sample consisted of interviewing a group of anglers that are attributed to each car. Non-anglers in the catch area were also interviewed to estimate the use by non-anglers and appropriately adjust the effort count.

The roving surveyor on the mainstem Nehalem also sampled boats that have completed fishing at Mohler Sand and Gravel. There are only three access points in Catch Area 5 that anglers can use to launch boats. The most upstream put-in is the Beaver Slide, several miles downstream is the Mohler Sand and Gravel access and the most downstream landing is Roy Creek. Effort was be determined by counting trailers at the Beaver Slide putin during the bank angler pressure count.

Sampling was not been scheduled for the Nehalem River above the Nehalem River Falls (Catch Area 6). Periodic surveys in 1998-2001 determined that angler effort and catches in the area were too small to significantly affect the catch estimate for the basin and did not warrant the required survey effort.

## Future Genetic Analyses

The population structure of fall chinook in the Nehalem River basin is unknown. There may be more than one distinct breeding population of fall chinook. We suspect that the upper basin fall chinook are distinct from other mainstem Nehalem groups based on migration timing and distance traveled. It could be that there are additional distinctions to be drawn among groups in the main Nehalem basin. To make this determination possible, ODFW field crews collected tissue samples (a rayed fin clip) from chinook collected by the brood program and from carcasses collected on spawning grounds. Collected tissue samples are stored in ethanol and are archived with Dr. Michael Banks of OSU's Hatfield Marine Science Center. Dr. Banks will be collaborating with other coastal labs in the establishment of a DNA baseline for fall chinook that will be a significant first step toward genetic stock identification.

## DATA ANALYSIS METHODS

## Spawner Escapement Estimates

The Chapman version of the Peterson mark/recapture formula was used to estimate fall chinook escapement above trap sites. Estimates were derived using the following formula:

$$
\hat{N}_{i}=\frac{(M+1)(C+1)}{(R+1)}
$$

where
$\hat{N}_{i}=$ the estimated population of fall chinook above the trap for calibration site i.
$M=$ the number of fall chinook tagged at the trap site.
$C=$ the number of fall chinook recovered on the spawning grounds.
$R=$ the number of recovered tagged fall chinook.
The assumptions for use of the Peterson estimator are:

1. all fish have an equal probability of being marked at the trap site; or,
2. all fish have an equal probability of being inspected for marks; or,
3. marked fish mix completely with unmarked fish in the population between events; and,
4. there is no recruitment to the population between capture events; and,
5. there is not trap induced behavior; and,
fish do not lose their marks and all marks are recognizable.

Assumptions 1 and 2 are presumed not to hold true for trapping on the North Fork Nehalem River and mainstem Nehalem River. The proportion of chinook marked at the trap sites varies due to flow conditions and trap inefficiencies. The same holds true on the spawning grounds for carcass collection. However, information about size and age selectivity during the two capture events can be estimated through a battery of tests (Appendix A) to determine if further stratification of the data set is appropriate to meet the assumptions. Assumption 3 will be estimated by data from the spawning grounds stratified by area and time. Chi-square analysis will be used to determine if there are significant differences between the strata. If differences are found, the Darroch (1961) maximum likelihood estimator will be used. If the resulting estimate is within $10 \%$ of the pooled Peterson estimator, the stratified estimate will not be used for simplicity sake.

Assumptions 4 and 5 do not apply to this situation. Only adult chinook salmon migrating upstream of the trap sites were used in the mark-recapture study and recruitment to the population is not possible. The second capture event is an active sampling technique to collect carcasses within the spawning areas upstream of the trap sites and trap induced behavior will not occur. However, for the first event, trap induced behavior can occur and age/sex selectivity is estimated as discussed for size bias.

Tag loss (assumption 6) was assumed to be zero because of the use of multiple tags. All tags were assumed to be identified if present. Through the use of mutilation marks and anchor tags, trained field crews should observe each tagged fish. The uses of multiple marks (including tags and an operculum punch) have been shown to assure the identification of marked fish on the spawning grounds (Pahlke et al. 1999).

A bootstrap technique was used to estimate variance, bias and confidence intervals of the population estimate (Buckland and Garthwaite 1991, Mooney and Duval 1993). The fate of chinook that pass by each trapping facility were divided into several capture histories to form an empirical probability distribution as follows:

1. marked and harvested in fishery $\left(=H_{i}\right)$, this was assumed zero,
2. marked and were captured out of the experiment area $\left(=F_{i}\right)$,
3. marked and recaptured on the spawning grounds $\left(=R_{i}\right)$,
4. marked and never seen again $\left(=\hat{M}_{i} \square R_{i}\right)$,
5. unmarked and inspected on the spawning grounds, and $\left(=C_{i} \square R_{i}\right)$,
6. unmarked and never seen ( $=\hat{N}_{i} \square \hat{M}_{i} \square C_{i}+R_{i}$ ),
where $M_{i}=$ the number of fish tagged at a trap site (event 1 ), $C_{i}=$ the number of carcasses inspected on spawning grounds (event 2), $R_{i}$ the number of marked fish recovered on spawning grounds (event 3 ), and $N_{i}$ is the population estimate.

A random sample of size $N_{i}$ was drawn with replacement from the empirical probability distribution. Values for the statistics $M_{i}{ }^{*}, C_{i}{ }^{*}, R_{i}{ }^{*}$ were calculated and a new population size $N_{i}{ }^{*}$ estimated. We repeated this process 1,000 times to obtain samples for estimates of variance, bias and bounds of $95 \%$ confidence intervals.

Variance was estimated by:

$$
v\left(\hat{N}_{i}^{*}\right)=\frac{\square_{b=1}^{B}\left(\hat{N}_{i(b)}^{*} \square \overline{\hat{N}}_{i}^{*}\right)}{B \square 1}
$$

where B equals 1,000 (the number of bootstrap samples).
The $95 \%$ confidence intervals of the estimate are taken as $+/-1.96 * \square\left(\hat{N}_{i}^{*}\right)$ from the bootstrap simulation. The $95 \%$ relative precision of the estimate is thus $1.96^{*} \square\left(\hat{N}_{i}^{*}\right) / \hat{N}_{i}$.

To estimate the statistical bias, the average or expected bootstrap population estimate was subtracted from the point estimate (Mooney and Duvall 1993:31).

$$
\operatorname{Bias}\left(\hat{N}_{i}\right)=\hat{N}_{i} \square \overline{\hat{N}}_{i}^{*} \text {, where } \overline{\hat{N}}_{i}^{*}=\frac{\square_{b=1}^{B} \hat{N}_{i(b)}^{*}}{B}
$$

## Radio Telemetry

Radio telemetry information was used to partition the basin-wide make-recapture estimate into tributary and mainstem strata. Several assumptions must be taken into consideration in order to effectively use telemetry data:

1) fish tagged are typical of the population of interest, and
2) behavior is not altered by handling or the presence of a tag, and
3) survival is not altered by handling or presence of a tag

Fish were selected by a systematic random sample over the entire run at mainstem weir, which minimized any bias in selection of tagged fish (assumption 1). From the mark-recapture experiment, data on selectivity of fish either by size, sex or timing was available to assess any bias in the tagging procedure if it exists. However, since the fish that are available to the mark-recapture experiment and the telemetry study should be biased similarly, biased selection should not be a problem for the telemetry study. The population of interest is the distribution of tagged fish in the Nehalem River, since that is the only information the mark-recapture estimate will be using. Changes in survival between tagged and non-tagged fish (assumption 3) were assessed by anecdotal information gathered on the number of pre-spawn mortalities of radio tagged fish compared to the observed pre-spawn mortality of anchor tagged fish in the watershed.

The fraction of chinook located in each stratum $i$ (tributary or mainstem) was estimated by (Cochran 1977):
$\hat{p}_{i}=\frac{n_{i}}{\hat{n}}$, where
$\hat{n}=n_{h} \square n_{f} \square n_{m} \square n_{l}$, and
$n_{i}=$ number of fish with transmitters that spawned in either a trib. or mainstem statum,
$n_{h}=$ fish with transmitters returned from anglers,
$n_{f}=$ fish with transmitters that did not continue migrating up the Nehalem River,
$n_{m}=$ fish with transmitters that died before spawning, and
$n_{l}=$ transmitters that were regurgitated, batteries failed, or not recorded again.
The estimated variance of $\mathrm{p}_{i}$ is:
$\operatorname{var}\left(\hat{p}_{i}\right)=\frac{\hat{p}_{i}\left(1 \square \hat{p}_{i}\right)}{\hat{n} \square 1}$
Therefore the estimated number of chinook $\left(\hat{N}_{i}\right)$ in each stratum $i$ is:
$\hat{N}_{i}=\hat{p}_{i} \hat{N}$, where
$\hat{N}=$ the chinook salmon escapement estimate from the mark-recapture experiment.
The variance of the estimated chinook population in stratum $i$ is (Goodman 1960):
$\operatorname{var}\left(N_{i}\right)=\square_{i} \mid \operatorname{var}\left(\hat{p}_{i}\right) \hat{N}^{2}+\operatorname{var}(\hat{N}) \hat{p}_{i}^{2} \square \operatorname{var}\left(\hat{N}_{i}\right) \operatorname{var}\left(\hat{p}_{i}\right)-$
Peak count is the largest sum of the live and carcass counts recorded on a single day for each survey. The peak counts are expressed as fish per unit length and averaged by each stratum. The high stratum of the mainstem was entirely surveyed; thus peak counts of each survey were summed. Expanding the average peak count for the other strata derived an escapement index for the total length of habitat in each stratum.

Average peak count per mile in each strata (S) was calculated as follows:
$S=\left(\prod_{i=1}^{n} P_{i}\right) /\left(\square_{i=1}^{n} M_{i}\right)$
where
$\mathrm{n}=$ the number of surveys
$\mathrm{P}_{\mathrm{i}}=$ peak count of the sum of carcasses and live chinook in survey i
$\mathrm{Mi}=$ length of survey i (miles)

## Creel Data Analysis

The Nehalem River creel survey is stratified by month, catch area, and angler type (shore or boat). Depending on harvest rates, anglers could be further post-stratified into private trips and guided trips. Data analysis procedures for post-stratification of private and guided trips will follow Bernard et al. (1998) if harvest rates differ significantly between the trip types. Missing data points from surveyor illness or equipment failures will be treated as random events and removed from the sampling frame. Bernard et al. (1998) describes several other events which must be taken into account during analysis that can bias harvest estimates including 1) zero interviews, but angling effort was counted, 2) zero harvest rate, but effort was counted, and 3 ) very low (1-2) numbers of interviews but with harvest. If any of these situations are encountered and deemed to bias the dataset, the data will be treated as missing data points and the substituted values derived from methods described in Bernard et al. (1998) and Guthrie et al. (1991).

Roving-Access Survey: Harvest will be determined separately for kept fish and for released fish. Estimated harvest per sample day in a particular stratum is (Pollock et al. 1994, Bernard et al. 1998)
$\hat{H}_{i}=\hat{E}_{i} \overline{c p u} \bar{e}_{i}$
where,
$i$ denotes sampling days,
$\hat{E}_{i}=$ estimated effort, and
$\overline{\operatorname{cpu}} \bar{e}_{i}=$ average catch per unit.
Because the roving-access surveys only interview completed angler trips average catch per unit effort is estimated as the ratio of means (Hoenig et al. 1997):
$\overline{\operatorname{cpue}}_{i}=\frac{\prod_{k=1}^{m_{i}} h_{i k}}{\prod_{k=1}^{m_{i}} e_{i k}}$, where
$k$ denotes individual anglers, $m$ denotes the number of anglers interviewed, $h$ is the number of fish caught during fishing trips that were interviewed, and $e$ is the length in hours of fishing trips of interviewed anglers.

Variance of cpue is estimated as (Bernard et al. 1998):
$v\left(\overline{c p u e_{i}}\right)=\frac{\prod_{k=1}^{m_{i}}\left(h_{i k} \square e_{i k} \overline{c p} \bar{u} \bar{e}_{i}\right)^{2}}{\bar{e}_{i}^{2} m_{i}\left(m_{i} \square 1\right)}$.
Fish harvested per catch/month strata equals:
$\hat{H}=D \frac{\prod_{i=1}^{d} \hat{H}_{i}}{d}$ where,
$d=$ number of sampled days in stratum, and
$D=$ total available sampling days in stratum.

Daily effort is estimated as:
$\hat{E}_{i}=T \frac{\square_{t=1}^{r} x_{i t}}{r}$ where,
$t$ denotes the individual roving count of anglers
$r=$ number of pressure counts per day, and
$T=$ the length of the sampling period (usually day length).
Since effort is determine systematically and not randomly the variance equation is (Wolter 1985):
$v\left(\hat{E}_{i}\right)=T^{2} \frac{\square_{t=2}^{r}\left(x_{i t} \square x_{i([\square 1)}\right)^{2}}{r^{2}(r \square 1)}$.

The variance of the daily harvest is (Goodman 1960 as cited by Bernard et al. 1998):

$$
v\left(\hat{H}_{i}\right)=\hat{E}_{i}^{2}\left(\overline{c p u \bar{e}_{i}}\right)+\overline{c p u e_{i}^{2}} v\left(\hat{E}_{i}\right) \square v\left(\overline{c p} \overline{e_{i}}\right) v\left(\hat{E}_{i}\right)
$$

and the variance for each catch/month stratum is:
$v(\hat{H})=D(D \square d) \frac{s_{1}^{2}}{d}+\frac{D}{d} \square_{i=1}^{d} v\left(\hat{H}_{i}\right), \quad$ where
$s_{1}^{2}=\frac{\square\left(\hat{H}_{i} \square \overline{\hat{H}}\right)^{2}}{d \square 1}$,
Total harvest is the sum of all catch in each strata and the total variance of the catch is the sum of all strata variances (Pollock et al. 1994).

Roving-Roving Surveys: The only difference in estimation between the roving - roving survey and the roving access survey is the catch per unit effort (срие) estimator. With roving surveys anglers are interviewed that have not completed fishing and the mean of ratios estimator should be used (Pollock et al. 1994).
$\overline{c p} \bar{u} \bar{e}_{i}=\frac{\prod_{k=1}^{m_{i}} \frac{h_{i k}}{e_{i k}}}{n}$, where
$k$ denotes individual anglers, $m$ denotes the number of anglers interviewed, $h_{i k}$ is the number of fish caught for an interviewed angler, $e_{i k}$ is the length in hours fished for an interviewed angler, and $n$ is the number of interviews for each day $i$.

The variance is calculated as (Jones et al. 1995):


## RESULTS

## Spawner Escapement Estimates

We marked between 98 and 335 adult ( $>600 \mathrm{~mm}$ fork length) fall chinook in the North Fork Nehalem basin from 1998 to 2001, and from 348 to 1,941 adult fall chinook in the maintem Nehalem from 2000 to 2002. Success in capture and marking migrating fall chinook varied depending on run size, timing of operations, and flow conditions. We experienced greater success as we learned from experience and covered a greater proportion of the run, and as we improved weir design.

Carcasses inspected in spawning ground surveys ranged from 49 in the Nehalem North Fork in 2001 to nearly 2,900 in the mainstem Nehalem in 2002. Numbers of marked chinook recaptured ranged from 0 to 281 . Our percentage recapture ranged from 0 to $14.5 \%$, also in the Nehalem mainstem in 2002.

Table 2 summarizes results for numbers of chinook marked, carcasses inspected and marked chinook recaptured.

We estimated spawner escapement numbers based on a pooled Peterson model. We also present estimates in Table 2 for stratified Peterson estimates based on sex, size and both sex and size for the mainstem Nehalem. In all cases but one, the stratified estimates were within $5 \%$ of the fully pooled Peterson estimate. The single exception was the estimate for the mainstem Nehalem in 2000 stratified by both sex and size. We feel that this estimate is driven strongly by the low numbers of female chinook recaptured that year, and that this estimate is not reliable.

We conducted chi-square tests for random assortment marked and unmarked chinook across sub-basins, and by Julian week in 2000 and 2001 (Appendix B). In most cases, we reject the null hypothesis of random assortment of these chinook. Accordingly, we performed stratified Darroch estimates of abundance. These are also presented in Table 2 and show close agreement with the fully pooled Peterson estimates. Therefore, we present the fully pooled Peterson estimates of spawner escapement as our best estimates based on the work performed in this study.

The $95 \%$ relative precision of our estimates were within the $25 \%$ objective for the Nehalem mainstem in 2001 and 2002 (Table 3). However, they were within $25 \%$ only in 1999 on the North Fork Nehalem. The failure to recover any marked carcasses in 2001 spawning ground surveys on the North Fork Nehalem was very disappointing, and prevents us from putting forward an escapement estimate for that year. Number of marked carcasses recovered is the primary element contributing to the level of precision of a spawner abundance estimate. We attribute the improved precision over time in the mainstem Nehalem to field crew experience in learning how to conduct surveys and where to look for marked carcasses.


Nehalem cumul progress report $98-02$

Table 2A: Mainstem Nehalem spawner escapement estimates with numbers of marked Chinook, carcasses inspected, and marked Chinook recaptured.


Fall chinook spawner escapement estimates with associated $95 \%$ confidence intervals, relative precision and bias estimate for the Nehalem River (2000-2002) and the Nehalem North Fork (1998-2001).


## Spawning ground survey calibrations

We conducted spawning ground surveys on five standard survey totaling 4.7 miles in the Nehalem mainstem and North Fork. In addition, we conducted surveys on randomly selected mainstem and tributary reaches tributary reaches as summarized in Table 1. In each survey, numbers of live fall chinook, dead fall chinook and redds were counted. From this data, we develop nine indices of abundance:

1. Peak Count per Mile by Reach - Peak count of live and dead fall chinook within each reach. Average over all reaches surveyed.
2. Peak Count Per Mile by Period - Find the week with the largest count per mile; average over all reaches surveyed that week.
3. Live chinook AUC per Mile - Area under the curve estimate of live chinook per mile, averaged over all reaches.
4. Average Peak Redd per Mile - peak count of redds for each reach, averaged over all reaches surveyd.
5. Redd AUC per Mile - Area under the curve estimate of the number of chinook redds per mile, averaged over all reaches surveyed.
6. Sum of Dead - Sum of dead fall chinook observed in a reach, averaged over all reaches surveyed.
7. Dead per Mile - Dead per mile in each reach, averaged over all reaches surveyed.
8. Average peak Dead - Peak dead per mile for each reach, averaged over all reaches.
9. Peak Dead per Mile by Period - Determine the week with the highest count of dead fish, average over all reaches surveyed that week.

Survey crews made every effort to visit reaches weekly. In some cases, low flow conditions meant that sequential zeroes were recorded, this was particularly true for 2002 with the late onset of fall rains. In other cases, rain events could prevent a reach from being surveyed if visibility criteria were not met.

For each survey index developed, we also calculated an expansion factor by dividing the index value into the spawner escapement estimate for that year (Tables 4A, 4B). For standard surveys, we now have two years of data and can look at the coefficient of variation in the expansion factor across years. The ideal survey index would have an interannual coefficient of variation of 0 if it moved in lock-step with changes in spawner abundance. Interannual coefficients of variation for standard surveys range from a low of $22.7 \%$ (average peak dead chinook per mile) to a high of $70.5 \%$ (live chinook AUC per mile). Two years of data is inadequate for calibration purposes, and we expect this section of the report to be more worthy of discussion in the 2004 edition.



Table 4B. Preliminary expansion factors for North Fork Nehalem River fall chinook spawning ground surveys.

| Basin | Year | Strata | Miles Sampled | Miles <br> Total | Reaches Sampled | $\begin{gathered} \text { Peak } \\ \text { Count/mile } \\ \text { (Reach) } \\ \hline \end{gathered}$ | st.dev | $\begin{gathered} \text { Expansion } \\ \text { Factor } \\ \hline \end{gathered}$ | $\underset{\text { (Period) }}{\text { Avg Peak Count }}$ |  | Expansion Factor | Live (AUC)/mile |  | Expansion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N. Fk. Nehalem | 1998 | Pooled | 6.5 | 20.3 | 6 | 18.2 | 19.8 | 53.68 | 16.5 | 5.3 | 59.21 | 23 | 21 | 42.48 |
| Falls) |  | Mainstem | 2.2 | 4.9 | 2 | 25.4 | 6.5 | 38.46 | 27.5 | 9.2 | 35.53 | 40 | 3.9 | 24.43 |
|  |  | Tributary | 4.3 | 15.4 | 4 | 14.6 | 24.2 | 66.92 | 11 | 2.3 | 88.82 | 15 | 21 | 65.13 |
| (Soapstone Survey) |  | Standard Surveys | 0.69 | 0.69 | 1 | 119 |  | 8.21 | 119 |  | 8.21 | 170 |  | 5.75 |
| N. Fk. Nehalem | 1999 | Pooled | 10.1 | 20.3 | 10 | 16.3 | 22.7 | 30.06 | 9.5 | 12.2 | 51.58 | 19 | 29 | 25.79 |
| Falls) |  | Mainstem | 4.9 | 4.9 | 4 | 35 | 22 | 14.00 | 19.6 | 11.5 | 25.00 | 43 | 29 | 11.40 |
|  |  | Tributary | 5.2 | 15.4 | 6 | 1 | 1.9 | 490.00 | 1.2 | 2.4 | 408.33 | 0 |  | n/a |
| (Soapstone Survey) |  | Standard Surveys | 0.69 | 0.69 | 1 | 66.7 |  | 7.35 | 66.7 |  | 7.35 | 101.5 |  | 4.83 |
| N. Fk. Nehalem | 2000 | Pooled | 10.6 | 36 | 12 | 6 | 8.4 | 148.33 | 7.4 | 15.9 | 120.27 | 9.9 | 16 | 89.90 |
|  |  | Mainstem | 4.8 | 13.8 | 6 | 7.3 | 7.6 | 121.92 | 8.4 | 10.5 | 105.95 | 11.3 | 15 | 78.76 |
|  |  | Tributary | 5.8 | 22.2 | 6 | 4.8 | 9.1 | 185.42 | 7 | 17.6 | 127.14 | 8.5 | 18 | 104.71 |
| (Soapstone Survey) |  | Standard Surveys | 0.69 | 0.69 | 1 | 23 |  | 38.70 | 23 |  | 38.70 | 35 |  | 25.43 |
| N. Fk. Nehalem | 2001 | Pooled | 7.3 | 36 | 8 | 20.4 | 21.7 | n/a | 18.8 | 25.1 | n/a | 7.8 | 9.7 | n/a |
|  |  | Mainstem | 3.4 | 13.8 | 4 | 20.8 | 16.1 | n/a | 35.8 | 43.6 | n/a | 7.8 | 6.7 | n/a |
|  |  | Tributary | 3.9 | 22.2 | 4 | 31.4 | 25.4 | n/a | 9.4 | 17.1 | n/a | 7.8 | 13 | n/a |
| (Soapstone Survey) |  | Standard Surveys | 0.69 | 0.69 | 1 | 72 |  | n/a | 72 |  | n/a | 61.4 |  | n/a |
| Mainstem Random Ca | n(inter | al mean) |  |  |  |  |  | 58.13 |  |  | 55.49 |  |  | 38.19 |
| Mainstem Random Ca | $n$ (inter | al cv) |  |  |  |  |  | 97.34\% |  |  | 79.32\% |  |  | 93.55\% |
| Tributary Random Cal | (intera | al mean) |  |  |  |  |  | 247.44 |  |  | 208.10 |  |  | 84.92 |
| Tributary Random Calis | $n$ (inter | al cv) |  |  |  |  |  | 88.20\% |  |  | 83.84\% |  |  | 32.95\% |
| Pooled Random Calib | nterann | mean) |  |  |  |  |  | 77.36 |  |  | 77.02 |  |  | 52.72 |
| Pooled Random Calib | interan |  |  |  |  |  |  | 80.91\% |  |  | 48.88\% |  |  | 63.08\% |
| StandardSurvey Calib | interann | mean) |  |  |  |  |  | 18.08 |  |  | 18.08 |  |  | 12.00 |
| StandardSurvey Calib | interan |  |  |  |  |  |  | 98.74\% |  |  | 98.74\% |  |  | 96.97\% |


| Avg Peak Redd/Mile |  | Expansion Factor | Redd/mile (AUC) |  | Expansion <br> Factor | Sum of Dead | Expansion <br> Factor | Dead/Mile | Expansion <br> Factor | $\begin{gathered} \text { Avg Peak } \\ \text { Dead } \\ \hline \end{gathered}$ |  | Expansion <br> Factor | Peak Dead (Period) |  | Expansion <br> Factor | Pooled Petersen Escapment Est. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.6 | 2.7 | 212.39 | 4 | 2.9 | 244.25 | 29 | 33.69 | 4.46 | 218.98 | 3.5 |  | 279.14 | 2.9 |  | 336.90 | 977 |
| 7.3 | 0.9 | 133.84 | 6.3 | 0 | 155.08 | 20 | 48.85 | 9.09 | 107.47 | 8.2 |  | 119.15 | 6.5 |  | 150.31 | 977 |
| 3.2 | 2 | 305.31 | 2.8 | 3.5 | 348.93 | 9 | 108.56 | 2.09 | 466.79 | 1.1 |  | 888.18 | 1 |  | 977.00 | 977 |
| 11.6 |  | 84.22 | 10.6 |  | 92.17 | 33 | 29.61 | 47.83 | 20.43 | 30.4 |  | 32.14 | 30.4 |  | 32.14 | 977 |
| 10.2 | 11.6 | 48.04 | 5.2 | 5.4 | 94.23 | 72 | 6.81 | 7.13 | 68.74 | 3.6 | 4.9 | 136.11 | 2.7 | 4 | 181.48 | 490 |
| 19 | 12 | 25.79 | 8.3 | 5.6 | 59.04 | 71 | 6.90 | 14.49 | 33.82 | 7.7 | 4.5 | 63.64 | 5.6 | 3.9 | 87.50 | 490 |
| 2.5 | 4.2 | 196.00 | 2.7 | 4.3 | 181.48 | 1 | 490.00 | 0.19 | 2548.00 | 0.21 | 0.51 | 2333.33 | 0.21 | 0.51 | 2333.33 | 490 |
| 43.5 |  | 11.26 | 44.3 |  | 11.06 | 16 | 30.63 | 23.19 | 21.13 | 15.9 |  | 30.82 | 15.9 |  | 30.82 | 490 |
| 10.2 | 11.6 | 87.25 | 4.8 | 4.8 | 185.42 | 63 | 14.13 | 5.94 | 149.75 | 4.6 | 13.3 | 193.48 | 7.4 | 15.9 | 120.27 | 890 |
| 19 | 11.9 | 46.84 | 3.2 | 5.4 | 278.13 | 18 | 49.44 | 3.75 | 237.33 | 4 | 4.8 | 222.50 | 8.4 | 10.5 | 105.95 | 890 |
| 2.5 | 4.2 | 356.00 | 6.7 | 3.7 | 132.84 | 45 | 19.78 | 7.76 | 114.71 | 4.8 | 16 | 185.42 | 7 | 17.6 | 127.14 | 890 |
| 15.7 |  | 56.69 | 12.7 |  | 70.08 | 11 | 80.91 | 15.94 | 55.83 | 2.9 |  | 306.90 | 2.9 |  | 306.90 | 890 |
| 12.2 | 18.3 | n/a | 7.4 | 11 | n/a | 85 | n/a | 11.64 | n/a | 10.7 | 18.5 | n/a | 11.4 | 23.5 | n/a | NA |
| 14.80 | 26.60 | n/a | 8.8 | 15 | n/a | 80 | n/a | 23.53 | n/a | 20.9 | 22.7 | n/a | 19 | 29.8 | n/a | NA |
| 9.6 | 7.6 | n/a | 6 | 4.5 | n/a | 5 | n/a | 1.28 | n/a | 0.42 | 0.83 | n/a | 0.83 | 1.2 | n/a | NA |
| 50 |  | n/a | 33.8 |  | n/a | 29 | n/a | 42.03 | n/a | 18.6 |  | n/a | 18.6 |  | n/a | NA |
|  |  | 68.82 |  |  | 164.08 |  | 35.07 |  | 126.21 |  |  | 135.09 |  |  | 114.59 |  |
|  |  | 83.23\% |  |  | 66.93\% |  | 69.56\% |  | 81.65\% |  |  | 59.68\% |  |  | 28.17\% |  |
|  |  | 285.77 |  |  | 221.08 |  | 206.11 |  | 1043.17 |  |  | 1135.64 |  |  | 1145.83 |  |
|  |  | 28.61\% |  |  | 51.27\% |  | 121.21\% |  | 126.06\% |  |  | 96.43\% |  |  | 97.11\% |  |
|  |  | 115.90 |  |  | 174.63 |  | 18.21 |  | 145.82 |  |  | 202.91 |  |  | 212.88 |  |
|  |  | 74.06\% |  |  | 43.28\% |  | 76.34\% |  | 51.57\% |  |  | 35.47\% |  |  | 52.46\% |  |
|  |  | 50.73 |  |  | 57.77 |  | 47.05 |  | 32.46 |  |  | 123.28 |  |  | 123.28 |  |
|  |  | 72.63\% |  |  | 72.58\% |  | 62.34\% |  | 62.34\% |  |  | 128.98\% |  |  | 128.98\% |  |

Table 5A. Summary of Nehalem mainstem basin fall chinook standard survey expansion coefficients of variation.

## Nehalem River (Mainstem) <br> Pooled Random Calibration (interannual cv)

Mainstem Random Calibration(interannual cv)
Tributary Random Calibration (interannual cv) Standard Survey Expansion (interannual cv)

Pooled Random Calibration(interannual cv)
Mainstem Random Calibration(interannual cv)
Tributary Random Calibration (interannual cv) Standard Survey Expansion (interannual cv)

Survey Index:
1
$47.61 \%$
2
$57.61 \%$

| $\mathbf{3}$ | $\mathbf{4}$ |  |
| :---: | :---: | :---: |
| $37.64 \%$ | $44.70 \%$ | 11. |

$71.41 \% \quad 103.46 \% \quad 47.80 \% \quad 34.61 \% \quad 58.25 \%$
$36.64 \% \quad 16.29 \% \quad 49.19 \% \quad 44.07 \% \quad 60.15 \%$
$29.87 \% \quad 22.67 \% \quad 22.56 \% \quad 43.58 \% \quad 17.19 \%$

| $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: |
| $96.53 \%$ | $96.03 \%$ | $61.36 \%$ | $91.45 \%$ |
| $88.40 \%$ | $104.71 \%$ | $64.80 \%$ | $89.95 \%$ |
| $97.32 \%$ | $41.67 \%$ | $52.34 \%$ | $56.33 \%$ |
| $61.52 \%$ | $8.92 \%$ | $51.20 \%$ | $54.63 \%$ |



| Table 6.1-04. Summary of the estimated number of fall chinook by age escaping into the North Fork Nehalem River in the year 1998 based on spawning ground recoveries. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gender | Age |  |  |  |  |  |  |
|  | 2 | 3 | 4 | 5 | 6 | 7 | Total |
| Female | 0 | 0 | 203 | 238 | 48 | 0 | 489 |
| Male | 24 | 48 | 310 | 83 | 24 | 0 | 489 |
| All Chinook | 24 | 48 | 512 | 322 | 71 | 0 | 977 |




Table 6.3. Analysis of fall chinook salmon age composition from the North Fork Nehalem River mark-recapture study, 2000. Scales taken at tagging.


| Table 6.3-03. Summary of the proportion of fall chinook tagged in the year 2000 North Fork <br> Nehalem River as percent of total sample by gender and by age. |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Age |  |  |  |  |  |  |
|  | 2 | 3 | 4 | 5 | 6 | 7 |
|  | $0.0 \%$ | $31.0 \%$ | $17.2 \%$ | $0.0 \%$ | $0.0 \%$ | $0.0 \%$ |
|  | $0.0 \%$ | $10.3 \%$ | $24.1 \%$ | $13.8 \%$ | $3.4 \%$ | $0.0 \%$ |
|  | $0.0 \%$ | $15.4 \%$ | $15.4 \%$ | $5.1 \%$ | $1.3 \%$ | $0.0 \%$ |

Table 6.3-04. Summary of the estimated number of fall chinook by age escaping into the North Fork Nehalem River in the year 2000 based on tagging.

| Gender | Age |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | Total |  |
|  | 0 | 276 | 153 | 0 | 0 | 0 | 429 |  |
| Male | 0 | 92 | 215 | 123 | 31 | 0 | 461 |  |
| All Chinook | 0 | 137 | 137 | 46 | 11 | 0 | 331 |  |


| Age- | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lower CI | 0 | 18 | 18 | -27 | -26 | 0 |
| Upper Cl | 0 | 256 | 256 | 118 | 48 | 0 |
| SE of All Chinook | 0.0 | 60.7 | 60.7 | 37.2 | 18.9 | 0.0 |
| 1/2 95\% CI | 0 | 119 | 119 | 73 | 37 | 0 |

Table 6.3. Analysis of fall chinook salmon age composition from the North Fork Nehalem River mark-recapture study, 2000. Spawning ground recoveries.

| Count of Age | Age |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gender | 2 | 3 | 4 | 5 | 6 | 7 | Total |
| F | 0 | 6 | 3 | 26 | 4 | 0 | 39 |
| M | 0 | 13 | 16 | 9 | 1 | 0 | 39 |
| U | 0 |  |  |  |  |  | 0 |
| Total | 0 | 19 | 19 | 35 | 5 | 0 | 78 |


| Std Error of the proportion by age for each sex |  |  |  |  |  |  |  | $=\mathrm{t}$ value at $\mathrm{P}=5 \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gender | Age |  |  |  |  |  |  |  |
|  | 2 | 3 | 4 | 5 | 6 | 7 |  |  |
| Female <br> Male <br> Combined | 0.0\% | 3.0\% | 2.2\% | 5.4\% | 2.5\% | 0.0\% |  |  |
|  | 0.0\% | 4.2\% | 4.6\% | 3.6\% | 1.3\% | 0.0\% |  |  |
|  | 0.0\% | 4.9\% | 4.9\% | 5.7\% | 2.8\% | 0.0\% | 1.96 |  |
| 95\% Confidence Interval of Proportions by age for each sex |  |  |  |  |  |  |  |  |
| Female Lower CI | 0.0\% | 1.7\% | -0.4\% | 22.8\% | 0.2\% | 0.0\% |  |  |
| Female Upper Ci | 0.0\% | 13.6\% | 8.1\% | 43.9\% | 10.1\% | 0.0\% |  |  |
| Male Lower CI | 0.0\% | 8.3\% | 11.5\% | 4.4\% | -1.2\% | 0.0\% |  |  |
| Male Upper CI | 0.0\% | 25.0\% | 29.5\% | 18.7\% | 3.8\% | 0.0\% |  |  |
| Combined Lower CI | 0.0\% | 14.8\% | 14.8\% | 33.8\% | 0.9\% | 0.0\% |  |  |
| Combined Upper CI | 0.0\% | 33.9\% | 33.9\% | 56.0\% | 11.9\% | 0.0\% |  |  |


| Table 6.3-07. Summary of the proportion within age by gender of fall chinook <br> salmon carcasses recovered on spawning grounds in the year 2000 North Fork <br> Nehalem mark-recapture study. |
| :--- |


| Gender | Age |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 |
| Female | 0.0\% | 7.7\% | 3.8\% | 33.3\% | 5.1\% | 0.0\% |
| Male | 0.0\% | 16.7\% | 20.5\% | 11.5\% | 1.3\% | 0.0\% |
| Combined | 0.0\% | 24.4\% | 24.4\% | 44.9\% | 6.4\% | 0.0\% |


| Table 6.3-09. Summary of the estimated number of fall chinook by age escaping into the |
| :--- |
| North Fork Nehalem River in the year 2000 based on spawning ground recoveries. |


|  | Age |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 |
| Lower CI | 0 | 131 | 131 | 300 | 8 | 0 |
| Upper Cl | 0 | 302 | 302 | 498 | 106 | 0 |
| SE of All Chinook | 0.0 | 43.9 | 43.9 | 50.5 | 25.0 | 0.0 |
| 1/2 95\% CI | 0 | 86 | 86 | 99 | 49 | 0 |

Table 6.4. Analysis of fall chinook salmon age composition from the mainstem Nehalem River mark-recapture study, 2000. Scales taken at tagging.

|  |  |  |  |  |  |  |  |  | Error | e proportio | age for |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nehalem River | re feasib | ity study | 0. | 兂 | 俉 |  |  |  |  |  |  |  |  |  |  |
| Count of Age | Age |  |  |  |  |  |  | Gender | 2 | 3 | 4 | 5 | 6 | 7 |  |
| Gender | 2 | 3 | 4 | 5 | 6 | 7 | Total | Female | 0.0\% | 2.4\% | 2.4\% | 2.7\% | 0.7\% | 0.0\% |  |
| F | 0 | 48 | 48 | 67 | 3 | 0 | 166 | Male | 0.0\% | 2.4\% | 2.0\% | 1.4\% | 0.0\% | 0.0\% |  |
| M | 0 | 49 | 31 | 13 | 0 | 0 | 93 | Combined | 0.0\% | 3.0\% | 2.9\% | 2.9\% | 0.7\% | 0.0\% | 1.96 = $t$ value at $\mathrm{P}=5 \%$ |
| U | 0 |  |  |  |  |  | 0 | 95\% C | Interva | Proportio | age for |  |  |  |  |
| total | 0 | 97 | 79 | 80 | 3 | 0 | 259 | Female Lower CI | 0.0\% | 13.8\% | 13.8\% | 20.5\% | -0.1\% | 0.0\% |  |
|  |  |  |  |  |  |  |  | Female Upper Ci | 0.0\% | 23.3\% | 23.3\% | 31.2\% | 2.5\% | 0.0\% |  |
| Table 6.4-02. Summary of the proportion within age by gender of fall chinook salmon tagged in the year 2000 mainstem Nehalem mark-recapture feasibility study. |  |  |  |  |  |  |  | Male Lower CI | 0.0\% | 14.1\% | 8.0\% | 2.4\% | 0.0\% | 0.0\% |  |
|  |  |  |  |  |  |  |  | Male Upper CI | 0.0\% | 23.7\% | 15.9\% | 7.7\% | 0.0\% | 0.0\% |  |
| Gender | Age |  |  |  |  |  |  | Combined Lower CI | 0.0\% | 31.5\% | 24.9\% | 25.3\% | -0.1\% | 0.0\% |  |
|  | 2 | 3 | 4 | 5 | 6 | 7 |  | Combined Upper CI | 0.0\% | 43.4\% | 36.1\% | 36.5\% | 2.5\% | 0.0\% |  |
| Female | 0.0\% | 49.5\% | 60.8\% | 83.8\% | 100.0\% | 0.0\% |  |  |  |  |  |  |  |  |  |


| Table 6.4-03. Summary of the proportion of fall chinook tagged in the year 2001 Siuslaw River as percent of total sample by gender and by age. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Age |  |  |  |  |  |
| Gender | 2 | 3 | 4 | 5 | 6 | 7 |
| Female | 0.0\% | 18.5\% | 18.5\% | 25.9\% | 1.2\% | 0.0\% |
| Male | 0.0\% | 18.9\% | 12.0\% | 5.0\% | 0.0\% | 0.0\% |
| Combined | 0.0\% | 37.5\% | 30.5\% | 30.9\% | 1.2\% | 0.0\% |


| Table 6.4-04. Summary of the estimated number of fall chinook by age escaping into the mainstem Nehalem River in the year 2000 based on scales taken at tagging. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gender | Age |  |  |  |  |  |  |
|  | 2 | 3 | 4 | 5 | 6 | 7 | Total |
| Female | 0 | 1979 | 1979 | 2762 | 124 | 0 | 6844 |
| Male | 0 | 2020 | 1278 | 536 | 0 | 0 | 3834 |
| All Chinook | 0 | 3999 | 3257 | 3298 | 124 | 0 | 10678 |





| Table 6.5-06. Summary of scale readers analysis of fall chinook salmon ca recovered in the mainstem Nehalem River mark-recapture study, 2001. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Count of Age | Age |  |  |  |  |  |
| Gender | 2 | 3 | 4 | 5 | 6 | 7 |
| F | 0 | 29 | 349 | 93 | 4 | 0 |
| M | 13 | 226 | 446 | 57 | 0 | 0 |
| U | 0 |  |  |  |  |  |
| Total | 13 | 255 | 795 | 150 | 4 | 0 |
| Table 6.5-07. Summary of the proportion within age by gender of fall chinook salmon carcasses recovered in the year 2001 mainstem Nehalem mark-recapture study. |  |  |  |  |  |  |
| Gender | Age |  |  |  |  |  |
|  | 2 | 3 | 4 | 5 | 6 | 7 |
| Female | 0.0\% | 11.4\% | 43.9\% | 62.0\% | 100.0\% | 0.0\% |
| Male | 100\% | 88.6\% | 56.1\% | 38.0\% | 0.0\% | 0\% |

Table 6.5-08. Summary of the proportion of fall chinook carcasses recovered in the year 2001 mainstem Nehalem River as percent of total sample by gender and by age.

| Gender | Age |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 |  |
|  | $0.0 \%$ | $2.4 \%$ | $28.7 \%$ | $7.6 \%$ | $0.3 \%$ | $0.0 \%$ |  |
| Male | $1.1 \%$ | $18.6 \%$ | $36.6 \%$ | $4.7 \%$ | $0.0 \%$ | $0.0 \%$ |  |
| Combined | $1.1 \%$ | $21.0 \%$ | $65.3 \%$ | $12.3 \%$ | $0.3 \%$ | $0.0 \%$ |  |

Table 6.5-09. Summary of the estimated number of fall chinook by age escaping into the mainstem Nehalem River in the year 2001 based on spawning ground recoveries.

| Gender | Age |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | Total |  |  |
|  | 0 | 296 | 3565 | 950 | 41 | 0 | 4852 |  |  |
| Male | 133 | 2308 | 4556 | 582 | 0 | 0 | 7579 |  |  |
|  | All Chinook | 133 | 2605 | 8120 | 1532 | 41 | 0 |  |  |
|  | 12431 |  |  |  |  |  |  |  |  |


| Table 6.5-10. Confidence intervals (95\%) for the age classes of the <br> estimated fall chinook escapement in the mainstem Nehalem River, <br> 2001. |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 |  |
|  |  |  |  |  |  |  |  |
| Age |  |  |  |  |  |  |  |
| Lower Cl | 61 | 2320 | 7788 | 1302 | 1 | 0 |  |
| Upper Cl | 205 | 2889 | 8453 | 1762 | 81 | 0 |  |
| SE of All <br> Chinook | 36.7 | 145.4 | 169.4 | 117.3 | 20.4 | 0.0 |  |
| $1 / 295 \% \mathrm{Cl}$ | 72 | 285 | 333 | 230 | 40 | 0 |  |

Age composition based on scales taken at tagging and during spawning ground recoveries are presented in Tables 6.1 through 6.5. In general, males are returning at ages 3 and 4, with very few age 5 individuals represented in the samples. Females return predominately at ages 4 and 5 , with a somewhat lower frequency of age 3 individuals. Age 6 individuals are uncommon in this population.

## Radio Telemetry - Habitat Use and Spawning Ground Residence Time

We successfully tracked 34 radio tagged chinook in 2000 and 43 radio tagged chinook in 2001. In each year, approximately three quarters of the chinook spawned in mainstem habitat strata, and about one quarter in tributary habitat strata. These results are in accord with the results of radio tracking of fall chinook in other coastal basins (Table 7).

Table 7. Distribution of radio tagged fall chinook by strata from telemetry studies from four telemetry studies in three Oregon coastal basins.

| Location | Mainstem Strata |  |  | Tributary Strata |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | n | Distribution | SE | n | Distribution | SE |
|  |  |  |  |  |  |  |
| Nehalem River-00 | 26 | $76 \%$ | 0.017 | 8 | $24 \%$ | 0.032 |
| Nehalem River-01 | 31 | $72 \%$ | 0.015 | 12 | $28 \%$ | 0.039 |
| Siuslaw River-02 | 28 | $76 \%$ | 0.016 | 9 | $24 \%$ | 0.050 |
| South Fork Coos River-99 | 83 | $82 \%$ | 0.005 | 18 | $18 \%$ | 0.022 |

## Terminal Harvest Estimates

Creel surveys began July 1 and extended through November. In 2000 and 2001, the bulk of the salmon entered the bay by mid October and bay angling was done by November 1. However, 2002 marked a dramatic change in that the bulk of the salmon did not enter the bay until after November 1. Consequently, the distribution of effort of surveyors among sampling areas necessarily varies from year to year.

2002 was an experimental year in an attempt to streamline the Nehalem data collection process. Changes that were made include: targeting fishing boats, targeting fishing dock locations, and targeting fishing boat pressure counts. The purpose of the changes was to eliminate the collection of data unrelated to salmon harvest. In particular, changes excluded crabbing and non-fishing data.

The goal of the creel project is to calibrate Oregon's angler harvest card database that is the state's standard method for estimating recreational salmonid harvest. There are now two years of overlapping data for comparison as there is generally a two year lag in the computation of these harvest estimates. The creel survey for 1999 shows close agreement with the harvest card estimate, while the 2000 project creel estimate is $50 \%$ higher than the corresponding harvest card estimates (Table 8).

Table 8. Estimated terminal harvest catch of fall chinook salmon in the Nehalem River 1987-2001.
Harvest estimates based on recreational angler punchcards: 1987-2000

Run
Year

| Stream | 1987-88 | 1988-89 | 1989-90 | 1990-91 | 1991-92 | 1992-93 | 1993-94 | 1994-95 | 1995-96 | 1996-97 | 1997-98 | 1998-99 | 1999-00 | 2000-01 | 2001-02 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nehalem R. \& Bay below |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Elsie | 1,925 | 1,997 | 1,243 | 1,343 | 1,776 | 2,239 | 3,508 | 2,527 | 2,990 | 3,390 | 2,509 | 2,314 | 1,901 | 1,979 |  |  |
| Nehalem R. \& Bay above |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Elsie | -- | -- | -- | -- | -- | 104 | 0 | 37 | 48 | 100 | 36 | 10 | 44 | 41 |  |  |
| N. Fk. Nehalem River | 169 | 252 | 271 | 279 | 316 | 377 | 456 | 350 | 565 | 540 | 482 | 273 | 149 | 157 |  |  |
| Nehalem Total | 2,094 | 2,249 | 1,514 | 1,622 | 2,092 | 2,720 | 3,964 | 2,914 | 3,603 | 4,030 | 3,027 | 2,597 | 2,094 | 2,177 | n/a | n/ |

Harvest estimates based on creel survey: 1999-20
$20023357-2978$

Creel Estimate/Catch Card Estimate
(\%)
$95.61 \% \quad 154.20 \%$

Creel point estimates have been calculated for 2001 and 2002. However, challenges of data compilation into the appropriate format for calculating variances has not been completed.

## DISCUSSION

The Nehalem stock indicator project demonstrates that mark-recapture escapement estimates can be conducted with a high level of precision in large coastal river systems. The project also shows improved precision and efficiency as methodologies have evolved based on experience.

The mainstem Nehalem (exclusive of the North Fork Nehalem) accounts for an estimated $90 \%$ of the fall chinook returning to this system. Our efforts there show a clear progression of increasing numbers of chinook marked, carcasses inspected and marked chinook recaptured, all of which contribute to an increasingly precise estimate of spawner escapement.

The North Fork Nehalem River efforts at mark-recapture were disappointing. The system and site for tagging were selected to take advantage of existing facilities and opportunities. However, the small size of the North Fork Nehalem fall chinook population has precluded the cost-effective development of precise spawner abundance estimates that are adequate for CTC purposes.

Results of radio telemetry work in the Nehalem contributes to our understanding of fall chinook in two ways. First, it confirms and refines our understanding of residence time of live fish on spawning grounds, a parameter that is is important in estimating AUC indices from spawning survey data. Additionally, the telemetry information contributes to an emerging and consistent pattern that approximately three quarters of fall chinook spawn in what ODFW categorizes as mainstem habitat areas. This suggests that future emphasis on spawning surveys for abundance monitoring might best concentrate on these areas.

Calibration of spawning ground survey indices is an on-going process; the three years of calibration data collected thus far is not adequate to determine whether any of the indices being used can provide a precise monitoring mechanism for Oregon fall chinook. There is substantial opportunity for future analysis in this area; the indices we present are simple means of survey values, by reach. It is reasonable to hypothesize and investigate whether indices developed based on a subset of the selected reaches may pose a more reliable tracking mechanism of spawning escapement than the fairly coarse approach presented here.

Creel surveys as a means to calibrate the Oregon catch-card monitoring of salmonid harvest are also too preliminary to evaluate effectively at this time. Our work is constrained by several factors including the time-lag in developing Oregon catch-card harvest estimates, and the lack of variance information associated with these estimates.

## ACKNOWLEDGMENTS

We are very appreciative of the hard work and dedication of all field crew members who contributed to the data collected on this project. In particular, we wish to thank Todd Boswell and Mark Koehmstedt who provided extraordinary leadership, initiative and dedication in field data collection and organization. We also appreciate the cooperation and support of many members of the Nehalem Watershed Council. In addition, we appreciate the constructive comments of the following colleagues who reviewed earlier versions of this report and whose suggestions materially improved it. Finally, we appreciate the financial support provided by the U.S. Section of the Pacific Salmon Commission's Chinook Technical Committee and the National Marine Fisheries Service that made this study possible.

## REFERENCES

Bernard, D. R., A. E. Bingham, and M Alexandersdottir. 1998. Robust harvest estimates from on-site roving-access creel surveys. Transactions of the American Fisheries Society 127:481-495.

Boechler, J. L. and S. E. Jacobs. 1987. Catch and Escapement of fall chinook salmon from Salmon River, Oregon, 1986. Oregon Department of Fish and Wildlife, Fish Division., Annual Progress report. Portland.

Boydstun, L.B. 1994. Analysis of two mark-recapture methods to estimate the fall chinook salmon (Onocorhynchus tshawytscha) spawning run in Bogus Creek, California. Calif. Fish and Game. 80(1):1-13.

Buckland, S.T. and P.H. Garthwaite. 1991. Quantifying precision of mark-recapture estimates using bootstrap and related methods. Biometrics. 47:255-268.

Caughely, G. 1977. Analysis of vertebrate populations. John Wiley \& Sons. pp 139-140.
Cederholm, C.J., D.B. Houston, D.L. Cole, and W.J. Scarlett. 1989. Fate of coho salmon (Oncorhynchus kisutch) carcasses in spawning streams. Can. J. Fish. Aquat. Sci. 46: 13471355.

Cochran, W. G. 1977. Sampling techniques, $3^{\text {rd }}$ edition. Wiley, New York.
Darroch, J.N. 1961. The two sample capture-recapture census when tagging and sampling are stratified. Biometrika. 48: 241-260.

Efron, B., and R.J. Tibshirani. 1993. An introduction to the bootstrap. Chapman and Hall, New York. 436 p.

Firman, Julie. 1999. A survey design for integrated monitoring of salmonids. Submitted to the proceedings of the First International Symposium on GIS and Fisheries Science.

Germond, J.P. and J.L. Boechler. 1988. Investigations of Nehalem River summer chinook salmon stocks. Oregon Department of Fish and Wildlife, Portland, OR, progress report.

Goodman, L.A. 1960. On the exact variance of products. Journal of the American Statistical Association. 55: 708-713.

Henry, K.A., A.R. Morgan and R.L. Rulifson. 1950. The salmon catch of the sport fishery on the coastal rivers of Oregon in1949. Fish Commission Research Briefs, Fish Commission of Oregon. 2(2):33-38. Portland, OR.

Hodges, B. L. and S. E. Jacobs 1997. Inventory of spawning habitat used by Oregon coastal fall chinook salmon. Oregon Department of Fish and Wildlife. Project Report, August 1997.

Hoenig, J. M., C. M. Jones, K. H. Polock, D. S. Robson, and D. L. Wade. 1997. Calculation of catch rate and total catch in roving surveys of anglers. Biometerics 53-306-317.

Jacobs, S.E. and C. X. Cooney 1997. Oregon coastal salmon surveys. Oregon Department of Fish and Wildlife, Ocean Salmon Management Information Report, Portland.

Jacobs, S.E. and T.E. Nickelson 1998. Use of stratified random sampling to estimate the abundance of Oregon coastal coho salmon. Final Report Oregon Department of Fish and Wildlife. Portland.

Jacobs, S.E., J. Firman, G. Susac, E. Brown, B. Riggers and K. Temple. 2000. Status of Oregon coastal stocks of anadromous salmonids. Monitoring Program Report Number OPSW-ODFW 2000-3. Oregon Department of Fish and Wildlife, Portland, OR.

Jones, C. M., D. S. Robson, H. D. Lakkis, and J. Kressel. 1995. Properties of catch rates used in analysis of angler surveys. Transactions of the American Fisheries Society 124:911-928.

Mooney, C.V. and R. D. Duvall. 1993. Bootstrapping: a nonparametric approach to statistical inference. Sage Publications, Newbury Park, CA. 73 p.

Nicholas, J.W. and D. G. Hankin. 1988. Chinook salmon populations in Oregon coastal river basins: Description of life histories and assessment of recent trends in run strengths. Oregon Department of Fish and Wildlife, Corvallis, OR. Information Report 88-1.

ODFW (Oregon Department of Fish and Wildlife). 1998. Coastal salmon spawning survey procedures manual. Coastal Salmonid Inventory Project. Oregon Department of Fish and Wildlife, Corvallis, OR.

PSC, 1997. A review of stock assessment data and procedures for US chinook salmon stocks. Report of the Pacific Salmon Commission U.S. Chinook Technical Committee. USTCCHINOOK (97-1). Pacific Salmon Commission, Vancouver. BC. Canada.

Perrin, C.J. and J.R. Irvine, 1990. A review of survey life estimates as they apply to the area-under-the-curve method for estimating the spawning escapement of Pacific Salmon. Canadian Technical Report of Fisheries and Aquatic Sciences No. 1733: 49 p.

Pollock, K. H., C. M. Jones, and T. L. Brown. 1994. Angler survey methods and their applications in fisheries management. Special Publication 25, American Fisheries Society, Bethesda, Maryland.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Environment Canada Bulletin 191, Ottawa.

Riggers, B.L. 1998. Development of methods to estimate spawner abundance of Oregon coastal stocks of chinook salmon. Oregon Department of Fish and Wildlife, Initial Sampling Plan. August 1998.

Shardlow, T., R. Hilborn., and D. Lightly 1987. Components analysis of instream escapement methods for Pacific salmon (Oncorhynchus spp.) Canadian Journal of Fisheries and Aquatic Sciences. 44(5): 1031-1037

Solazzi, M.F 1984. Relationship between visual counts of coho, chinook and chum salmon from spawning fish surveys and the actual number of fish present. Oregon Department of Fish and Wildlife. Information Reports, (Fish) 84-7. Portland

Wallis, J. 1961. An evaluation of the Nehalem River salmon hatchery. Oregon Fish Commission report, Portland, OR.

Zhou, S. and R. Williams. 1999. Stock and recruitment analysis and escapement goals for Nehalem River fall chinook. Oregon Department of Fish and Wildlife, Portland, OR. Information Report 99-4.

Appendix A. Detection of size-selectivity in sampling and its effects on estimation of size composition [Taken directly from Pahlke et al. 1999, developed by Dave Bernard, Alaska Dept. of Fish and Game, Anchorage, AKJ.

Results of Hypothesis Tests (K-S and $\square^{2}$ ) on Results of Hypothesis Tests (K-S and $\square^{2}$ ) on lengths of fish MARKED during the First lengths of fish CAPTURED during the First Event and RECAPTURED during the Event and CAPTURED during the Second Second Event Event

Case I:
"Accept" $\mathrm{H}_{\mathrm{O}}$
"Accept" $\mathrm{H}_{\mathrm{O}}$

There is no size-selectivity during either sampling event.
Case II:
"Accept" $\mathrm{H}_{\mathrm{O}} \quad$ Reject $\mathrm{H}_{\mathrm{O}}$
There is no size-selectivity during the second sampling event but there is during the first.

## Case III:

Reject $\mathrm{H}_{\mathrm{O}} \quad$ "Accept" $\mathrm{H}_{\mathrm{O}}$
There is size-selectivity during both sampling events.
Case IV:
Reject $\mathrm{H}_{\mathrm{O}}$
Reject $\mathrm{H}_{\mathrm{O}}$
There is size-selectivity during the second sampling event; the status of size-selectivity during the first event is unknown.

Case I: Calculate one unstratified abundance estimate, and pool lengths, sexes, and ages from both sampling events to improve precision of proportions in estimates of composition.

Case II: Calculate one unstratified abundance estimate, and only use lengths, sexes, and ages from the second sampling event to estimate proportions in compositions.

Case III: Completely stratify both sampling events, and estimate abundance for each stratum. Add abundance estimates across strata to get a single estimate for the population. Pool lengths, ages, and sexes from both sampling events to improve precision of proportions in estimates of composition, and apply formulae to correct for size bias to the pooled data (p. 17).

Case IV: Completely stratify both sampling events and estimate abundance for each stratum. Add abundance estimates across strata to get a single estimate for the population. Use lengths, ages, and sexes from only the second sampling event to estimate proportions in compositions, and apply formulae to correct for size bias to the data from the second event.

Whenever the results of the hypothesis tests indicate that there has been size-selective sampling (Case III or IV), there is still a chance that the bias in estimates of abundance from this phenomenon is negligible. Produce a second estimate of abundance by not
stratifying the data as recommended above. If the two estimates (stratified and unbiased vs. biased and unstratified) are dissimilar, the bias is meaningful, the stratified estimate should be used, and data on compositions should be analyzed as described above for Cases III or IV. However, if the two estimates of abundance are similar, the bias is negligible in the UNSTRATIFIED estimate, and analysis can proceed as if there were no size-selective sampling during the second event (Cases I or II).

## APPENDIX B

Appendix B: Chi Square tests of random assortment by Julian week and sub-basin for marked and unmarked chinook salmon.

Marked and Unmarked chinook by Nehalem sub-basin, 2002

|  | Observed <br> marked | unmarked |  | Expected <br> marked | unmarked | chitest |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: |
| Cook | 18 | 155 | 173 | 17 | 156 | $1.371 \mathrm{E}-10$ |
| Humbug | 64 | 998 | 1062 | 105 | 957 | 6 |
| Lost | 28 | 285 | 313 | 31 | 282 | 849 |
| Nehalem | 136 | 806 | 942 | 93 | 159 |  |
| Rock | 30 | 146 | 176 | 17 | 164 |  |
| Salmnbry | 8 | 174 | 182 | 18 | 50 |  |
| Rest | 3 | 53 | 56 | 6 |  |  |
| sum | 287 | 2617 | 2904 |  |  |  |

Marked and Unmarked chinook by Julian week, 2002

| weeks | Observe marked | unmarked | sum | Expected marked | unmarked | chitest | d.f. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 39,40 | 11 | 48 | 59 | 6 | 53 | $4.057 \mathrm{E}-11$ | 9 |
| 41 | 39 | 234 | 273 | 27 | 246 |  |  |
| 42 | 25 | 161 | 186 | 18 | 168 |  |  |
| 43 | 30 | 167 | 197 | 19 | 178 |  |  |
| 44 | 17 | 96 | 113 | 11 | 102 |  |  |
| 45 | 9 | 56 | 65 | 6 | 59 |  |  |
| 46 | 21 | 78 | 99 | 10 | 89 |  |  |
| 47 | 73 | 663 | 736 | 73 | 663 |  |  |
| 48 | 40 | 624 | 664 | 66 | 598 |  |  |
| 49-51 | 22 | 490 | 512 | 51 | 461 |  |  |
| sum | 287 | 2617 | 2904 |  |  |  |  |

Appendix B: Chi Square tests of random assortment by Julian week and sub-basin for marked and unmarked chinook salmon.

Marked and Unmarked chinook by Nehalem sub-basin, 2001

| Sub-basin | Observed marked | unmarked | sum | Expected marked | unmarked | chitest | d.f. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Humbug | 19 | 308 | 327 | 21 | 306 | $4.63692 \mathrm{E}-07$ | 4 |
| Nehalem | 45 | 316 | 361 | 23 | 338 |  |  |
| Rock | 9 | 299 | 308 | 20 | 288 |  |  |
| Salmonberry | 2 | 127 | 129 | 8 | 121 |  |  |
| Other | 0 | 28 | 28 | 2 | 26 |  |  |
| sum | 75 | 1078 | 1153 |  |  |  |  |

Marked and Unmarked chinook by Julian week, 2001

| Week(s) |  | Observed marked |  | unmarked | sum | Expected marked |  | unmarked | chitest | d.f |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 39-42 |  |  | 10 | 262 | 272 |  | 18 | 254 | 0.001719941 | 3 |
|  | 43 |  | 24 | 242 | 266 |  | 17 | 249 |  |  |
|  | 44 |  | 17 | 124 | 141 |  | 9 | 132 |  |  |
| 45-48 |  |  | 24 | 450 | 474 |  | 31 | 443 |  |  |
| sum |  |  | 75 | 1078 | 1153 |  |  |  |  |  |

