

Oregon: Not the "show" me state. A study on the accuracy of *Tresus* capax (gaper clam) burrow hole counts

Natalie A. Amoroso, Anthony F. D'Andrea, Stacy N. Galleher, Kelsey L. Adkisson, Jennifer C. Boyer, Amy M. Hutmacher Oregon Department of Fish and Wildlife, Marine Resources Program

INTRODUCTION

When conducting clam surveys, there are tradeoffs between survey time, area covered and data accuracy. Clams can be identified from species specific burrow holes, or "shows", which are created after the clam's siphon is withdrawn from the sediment surface. Historically, burrow hole counts were used to quickly collect abundance data over a large spatial scale (Hancock et al. 1979). In the past, the state's harvest regulations were based on the best clam population data available, primarily burrow hole count data. However, different species burrow holes can occasionally look somewhat similar in appearance (Figure 1) or submerged aquatic vegetation (SAV) may obscure burrow holes.

A) Species specific characteristics of T. capax and S. gigantea siphons. B) 1m² sample site containing T. capax and S. gigantea burrow holes.

METHODS

We utilized two sampling methods to assess clam abundance in Oregon estuaries: a rapid assessment method (RAM) and a detailed assessment method (DAM).

RAM allows for broad areas to be sampled quickly. This method quantifies burrow holes, SAV and other habitat characteristics in a 1m² area (Figure 2).

DAM was used to determine clam abundance by digging a 1m² area to a depth of 35 cm. DAM provides more complete quantitative information on clam populations, but is more time and resource intensive (Figure 3).

We conducted RAM and DAM at the same 1m² area at 20 replicate sites in both Tillamook and Yaquina Bays. We compared RAM and DAM by determining the accuracy of burrow hole counts in predicting presence/absence and abundance of T. capax. We also determined how SAV, average clam size and sediment type influence the accuracy of clam abundance data determined from burrow hole counts.

RAM

Figure 2: Conducting RAM. A) Visually surveying a 1m² sample site to estimate percent cover of SAV. B) Counting T. capax burrow holes in a 1m² sample with dense cover.

DAM

Figure 3: Conducting DAM. A) Digging a 1m² sample site to collect shellfish. B) Measuring and recording data from collected shellfish.

RESULTS

A crew of four can RAM an average of 20 sites or DAM a maximum of 5 sites during a negative low tide. However, DAM requires additional lab time after field data collection to measure the collected clams.

In Tillamook Bay, burrow hole counts accurately predicted the presence or absence of T. capax at a sample location 75% of the time (Figure 4 A). In Tillamook Bay, 57 burrow holes were counted during RAM, while 93 T. capax were dug in DAM. When using burrow counts alone, the abundance of T. capax was underestimated by 2.5 clams per m². In Yaquina Bay there was only a 20% chance of accurately predicting if T. capax were present (Figure 4 B). Although 38 clams were collected in Yaquina Bay during RAM, only one burrow hole was detected from RAM sampling.

Sediment type and average size of *T. capax* were similar in both bays. In Tillamook Bay, SAV percent cover ranged from 0% to 90% and the accuracy of burrow hole counts was inversely proportional to percent cover (Figure 5). Presence of SAV did not affect burrow holes count accuracy in Yaquina Bay since percent cover was always less than 10% (sparse).

Tillamook	Holes	Holes	
Bay	Present	Absent	
Т. сарах			
Clams	CO 9/	15%	
Present	60%	(not detected)	
Clams	10%	4 69/	
Absent	(mis-ID)	15%	

B

	-		
Yaquina Bay	Holes	Holes	
T. capax	Present	Absent	
Clams	50/	80%	
Present	5%	(not detected)	
Clams	0%	15%	
Absent	(mis-ID)		

ure 4: Ability to determine sence/absence of T. capax ed on burrow hole counts. ified by clam collection from M. Values are reported as the centage of samples in each egory. Highlighted boxes icate when the prediction was rect. Mis-ID occurred when row holes were observed but no ns were present. N=20 in each A) Tillamook Bay. B) Yaquina

Figure 5: Accuracy of burrow hole counts in predicting presence/absence and abundance of T. capax based on percent cover of SAV in Tillamook Bay. A) Abundance of T. capax from RAM data versus abundance from DAM data fitted with regression lines. Y-intercept represents the number of *T. capax* not detected per sample. Different shapes represent different SAV percent cover values. B) Sample

DISCUSSION

Burrow hole counts were a more accurate method of estimating presence/absence and abundance of T. capax in Tillamook Bay than in Yaquina Bay. Differences between bays could be due to:

plots showing differences in percent cover bins.

	Tillamook Bay sites	Yaquina Bay sites
Tidal Height (MLLW)	0'	+2'
Sampling Time	May and June	March and April

 RAM will likely be used in the future based on sampling efficiency but should be used in conjunction with DAM to balance the need to survey large areas with the accuracy needed to obtain the best possible population estimates.

- · Correction factors incorporating the abundance of undetected clams in an area could be used to more accurately represent T. capax distribution and abundances.
- · Correction factors may need to be bay specific since the ability to predict T. capax presence/absence and abundance seems to vary between estuaries.

Funding provided by recreational shellfish licenses.

