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1. Abstract 
During 2017 we monitored the status and trend of anadromous salmonids in the John Day 

River basin.  Specific metrics were: 1) spawning escapement of adult summer steelhead 
Oncorhynchus mykiss in the South Fork John Day River population, 2) origin (hatchery or wild) of 
adult summer steelhead in the entire John Day River basin, 3) summer rearing density of O. 
mykiss in the South Fork and Middle Fork populations, 4) out-migrant abundance of summer 
steelhead and spring Chinook Oncorhynchus tshawytscha, 5) productivity (recruits per parental 
spawner) of select summer steelhead and spring Chinook populations, and 6) smolt-to-adult-
ratios (SAR) for summer steelhead and spring Chinook describing survival through Columbia 
River and Pacific Ocean life history phases. 

We estimated that 252 adult steelhead escaped to spawn in the South Fork John Day River 
during 2017, all of which were estimated to be wild-origin.  Of the steelhead throughout the 
John Day River basin which could be visually identified as having or lacking an adipose fin, 0% 
were classified as hatchery-origin.  Concurrent with juvenile steelhead density estimation, we 
collected Columbia Habitat Monitoring Program (CHaMP) data at 26 sites in the South and 
Middle forks of the John Day River. 

Juvenile salmonid out-migrant abundance estimates during migratory year 2017 were 
comparable with prior years.  Per-capita out-migrant production decreased in 2017, suggesting 
density-dependent limitations on freshwater production from the large spawner broods in 2014 
and 2015.  Smolt-to-adult survival for the 2015 migration year declined as compared to prior 
years for steelhead, but was consistent with prior years for earlier migrating Chinook.   

Lessons Learned 

Despite increases in out-migrant abundance during 2010-2012, some John Day salmonid 
populations continue to exhibit low freshwater productivity.  The Middle Fork appears to have 
the poorest freshwater productivity of the populations we monitored.  Continued out-migrant 
trapping revealed that fewer than 2,000 Chinook smolts reached John Day Dam in 2015.  As 
expected based on this poor smolt production, only 29 Chinook redds were observed in the 
Middle Fork during 2017.  While our tracking of this cohort is encouraging from a monitoring 
perspective—our out-migrant trapping and smolt survival estimates accurately predicted adult 
abundance, this cohort was discouraging from a population recovery perspective.  Additional 
freshwater rearing environment alterations (principally--reduction in maximum stream 
temperature through increased stream shading) are required to increase the productivity of the 
Chinook and steelhead populations in the Middle Fork. 
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2. Introduction  
A. Fish Population Status Monitoring  

The John Day River, located in northeastern Oregon, supports five wild populations of 
summer steelhead (Oncorhynchus mykiss) and three populations of wild spring chinook 
(Oncorhynchus tschawytscha) with no hatchery supplementation.  However, these populations 
remain depressed relative to historic levels.  In 1999, the National Marine Fisheries Service 
(NMFS) listed the Middle Columbia River summer steelhead Distinct Population Segment (DPS), 
which includes the John Day River Major Population Group (MPG), as threatened under the 
Endangered Species Act (ESA).  Although numerous habitat protection and rehabilitation 
projects have been implemented within the John Day River basin to improve steelhead and 
other salmonid freshwater production and survival, it has been difficult to estimate the 
effectiveness of these projects without a systematic program in place to collect information on 
the status, trends, and distribution of spawning activity, juvenile salmonids, and aquatic habitat 
conditions within the basin.   

Prior to the inception of this project, population and environmental monitoring of steelhead 
in the basin consisted of a combination of index spawning surveys and periodic monitoring of 
some status and trend indicators.  While index spawning data is useful for drawing inference 
about long-term trends in adult steelhead abundance, they are limited for determining the 
status of steelhead escapement or distribution at the population or MPG scale because survey 
sites are not randomly selected and are likely biased towards streams with higher fish 
abundance.  A broader approach to the monitoring and evaluation of status and trends in 
anadromous and resident salmonid populations and their habitats was needed to provide data 
to effectively support restoration efforts and guide alternative future management actions in 
the basin.   

The Independent Scientific Review Panel (ISRP) recommended that the region move away 
from index surveys and embrace probabilistic sampling for most population and habitat 
monitoring.  To meet the ISRP recommendation, the structure and methods employed by the 
Oregon Plan for Salmon and Watersheds Monitoring Program were extended to the John Day 
basin.  This approach incorporates the sampling strategy of the United States Environmental 
Protection Agency’s (EPA) Environmental Monitoring and Assessment Program (EMAP).  This 
research effort employs a statistically based and spatially explicit sampling design to answer key 
monitoring questions, integrate on-going sampling efforts, and improve agency coordination.  
The current program seeks to integrate project objectives focused on summer steelhead 
spawning metrics, juvenile salmonid metrics, and aquatic habitat conditions.   

This project provides information as directed by two measures of the Columbia River basin 
Fish and Wildlife Program.  Measure 4.3C specifies that key indicator naturally spawning 
populations should be monitored to provide detailed stock status information.  In addition, 
measure 7.1C identifies the need for collection of population status, life history, and other data 
on wild and naturally spawning populations.  This project was developed in direct response to 
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the recommendations and needs of regional modeling efforts, the ISRP, the FCRPS BiOp, the Fish 
and Wildlife Program, the Oregon Plan for Salmon and Watersheds, and the Columbia Basin Fish 
and Wildlife Authority Multi-Year Implementation Plan. 

Adult Steelhead Monitoring Objectives 
1. Monitor status and trends of steelhead spawning distribution and abundance. 
2. Estimate hatchery fraction of steelhead spawning population(s). 
3. Provide background data that can be used for: 

a. Stock assessment and recovery planning. 
b. Comparison data for long-term effectiveness monitoring of habitat projects. 
c. Annual estimates of spawner escapement, age structure, smolt-to-adult ratio, egg-

to-smolt survival, smolt-per-spawner ratio, and freshwater habitat use. 

Juvenile Salmonid Summer Rearing Monitoring Objectives  
1. Monitor status and trend of juvenile salmonid abundance in the Middle Fork and South 

Fork John Day River populations. 
2. Characterize abundance and density of juvenile salmonids at site and population scales. 
3. Evaluate relative condition metrics of juvenile O. mykiss.   
4. Evaluate age structure of juvenile salmonids in the Middle Fork and South Fork John Day 

River populations. 

Juvenile Salmonid Out-Migration Monitoring Objectives  
1. Monitor the status and trend of out-migrant juvenile salmonid abundance. 
2. Evaluate size and condition of out-migrant juvenile salmonids. 
3. Evaluate age structure of out-migrant juvenile salmonids. 

Productivity Monitoring Objectives 
1. Estimate smolts per parental spawner for steelhead and Chinook populations. 
2. Monitor status and trends in steelhead and Chinook productivity. 
3. Assess productivity of natural salmonid populations and possible correlative factors.  
4. Provide productivity measures for TRT recovery planning and implementation.  

Smolt-to-Adult Ratio Monitoring Objectives 
1. Tag emigrating summer steelhead to estimate smolt-to-adult ratio and provide tagged 

juveniles for Comparative Survival Study (CSS). 
2. Tag emigrating spring chinook to estimate smolt-to-adult ratio and provide tagged 

juveniles for Comparative Survival Study (CSS). 
3. Monitor status and trends of steelhead and Chinook survival rates. 

 

This Project Supports the Fish and Wildlife (F&W) Program Strategies:  

• Assess the status and trend of adult natural and hatchery origin abundance of fish 
populations for various life stages.  
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• Assess the status and trend of spatial distribution of fish populations.  
• Assess the status and trend of diversity of natural and hatchery origin fish 

populations. 

This project answers (provides data to help answer) the F&W Program Management 
Questions:  

• What are the status and trend of adult abundance of natural and hatchery origin fish 
populations? 

• What are the status and trend of spatial distribution of fish populations? 
• What are the status and trend of diversity of natural and hatchery origin fish 

populations? 
 

B. Tributary Habitat RM&E 

The same objectives outlined in section A of this Introduction are applicable to section B as 
well and therefore will not be differentiated in the Methods or Results sections of this report.  
The data collected for these objectives will help evaluate population scale trends, which can be 
viewed as the product of restoration efforts, background environmental conditions (e.g., 
magnitude and timing of precipitation), and starting stock abundance.  These data will 
additionally be used to represent the John Day Basin populations as an index stock for 
comparison with other Columbia River populations.  Our continued monitoring efforts to 
estimate salmonid smolt abundance, age structure, SAR, freshwater production, freshwater 
habitat use, and distribution of critical life stages will enable managers to assess the long-term 
effectiveness of habitat projects and to differentiate freshwater and ocean survival. 

This Project Supports the Fish and Wildlife (F&W) Program Strategy:  

• Monitor and evaluate tributary habitat conditions that may be limiting achievement 
of biological performance objectives. 

This project answers (provides data to help answer) the F&W Program Management 
Questions:  

• What are the tributary habitat limiting factors (ecological impairments) or threats 
preventing the achievement of desired tributary habitat performance objectives? 

3. Methods:  Protocols, Study Designs, and Study Area  

Fish Population Status Monitoring Protocols and Study Designs 

Adult Steelhead Monitoring 
Estimating Adult Summer Steelhead Escapement in North East Oregon; 

http://www.monitoringmethods.org/Protocol/Details/757 

http://www.monitoringmethods.org/Protocol/Details/757
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Juvenile Salmonid Summer Rearing Monitoring 
Juvenile Salmonid Density & Distribution in Northeast Oregon Watersheds; 

http://www.monitoringmethods.org/Protocol/Details/370 

Determine genetic structure of John Day subbasin steelhead populations; 
http://www.monitoringmethods.org/Protocol/Details/444 

Juvenile Salmonid Out-Migration Monitoring 
Estimating Salmonid Smolt Abundance in Northeast-Central, Oregon; 
http://www.monitoringmethods.org/Protocol/Details/456 

John Day Basin Chinook Smolt Monitoring; 
http://www.monitoringmethods.org/Protocol/Details/457 

Productivity Monitoring 
Estimating Adult Summer Steelhead Escapement in North East Oregon; 

http://www.monitoringmethods.org/Protocol/Details/757 

Estimating Salmonid Smolt Abundance in Northeast-Central, Oregon; 
http://www.monitoringmethods.org/Protocol/Details/456 

Smolt-to-Adult Ratio Monitoring 
Smolt-to-Adult-Ratio (1998-016-00); 

http://www.monitoringmethods.org/Protocol/Details/372 

Tributary Habitat Monitoring Protocols and Study Designs 
Scientific Protocol for Salmonid Habitat Surveys within the Columbia Habitat Monitoring 
Program (CHaMP); http://www.monitoringmethods.org/Protocol/Details/416 

  

http://www.monitoringmethods.org/Protocol/Details/370
http://www.monitoringmethods.org/Protocol/Details/444
http://www.monitoringmethods.org/Protocol/Details/456
http://www.monitoringmethods.org/Protocol/Details/457
http://www.monitoringmethods.org/Protocol/Details/757
http://www.monitoringmethods.org/Protocol/Details/456
http://www.monitoringmethods.org/Protocol/Details/372
http://www.monitoringmethods.org/Protocol/Details/416
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Study Area 

 

Figure 1.  Map of 2017 monitoring sites for John Day River basin summer steelhead spawning 
escapement, and summer juvenile rearing.  



14 
 

 

Figure 2.  Map of annually operated John Day River basin out-migrant monitoring sites.  
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4. Results  

Adult Steelhead Monitoring 
Adult summer steelhead escapement monitoring during 2017 was focused on the South Fork 
John Day River population; we did not estimate escapement at the Major Population Group 
scale for the John Day River.  In the South Fork John Day River basin, we observed redds at 25% 
of sites surveyed.  We observed 16 redds in the 55 km of sampled stream; resulting in an 
estimated 0.3 redds/km for the basin.  The total South Fork steelhead escapement was 
estimated at 252, with 100% Natural-origin Spawner Abundance (NoSA) (Figure 3).  The NOAA 
recovery goal for abundance of the South Fork steelhead population is an escapement of 500 
adults (NMFS 2009).  Our results indicate escapement has exceeded this goal in 9 of the 12 years 
that we have estimated spawning abundance in the South Fork (Figure 3). 

We estimated the proportion of hatchery origin spawners (PHoS) throughout the entire John 
Day River basin at 0% in 2017 (Figure 4).  This is the 1st year we have not observed any hatchery-
origin steelhead in the John Day River basin.  This first observation of 0 PHoS correlates with the 
lowest observed smolt transportation fraction two years earlier, which was markedly lower than 
all other years (Figure 4). 

 

Figure 3.  Annual adult steelhead escapement estimates for the South Fork John Day River basin 
from 2006 to 2017.  Error bars indicate 95% confidence intervals. 
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Figure 4.  Proportion of adult steelhead observed in the John Day River basin identified as 
hatchery origin from 2004 to 2017 (bars).  Also shown is the percentage of hatchery steelhead 
smolts collected and barge transported from Lower Granite Dam (Snake River) two years prior 
to the spawning year (triangles). 

 

 

Juvenile Salmonid Summer Rearing Monitoring 
 

Mean fork length of juvenile steelhead in both the Middle Fork and South Fork 
populations increased significantly in 2017, as compared to the prior two years.  
Increased mean size, most likely created by increased individual growth rate, is a 
plausible response to the decreased spawner density observed in the recent several 
years.  Condition factor showed no significant difference from the prior two years in 
either population, however.  This suggests that condition factor of juvenile steelhead 
may be more influenced by density-independent factors, such as streamflow and 
temperature.  High stream flows and cool temperatures during spring 2017, the primary 
annual growth period, may have had a substantial influence on condition factor 
measured at the end of summer. 
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Figure 5.  Mean fork length (FL) of juvenile O. mykiss sampled in the Middle Fork John Day River 
2011–2017 summer juvenile fish sampling.  Error bars represent 95% confidence intervals. 

 

 

Figure 6.  Mean fork length (FL) of juvenile O. mykiss sampled in the South Fork John Day River 
during 2011–2017. Error bars represent 95% confidence intervals. 
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Figure 7.  Mean condition factor of juvenile O. mykiss (≥100 mm) sampled in the South Fork and 
Middle Fork populations during 2011–2017.  Error bars represent 95% confidence intervals. 

 

Juvenile Salmonid Out-Migration Monitoring 
 

Juvenile Steelhead Capture and Tagging 

Out-migrant abundance of juvenile steelhead from the South Fork, Upper Mainstem, and 
Middle Fork populations during 2017 remained consistent with prior years.  All three 
populations appear to have similar temporal trends in production (Figure 8).  The estimated 
smolt equivalents (smolts alive at John Day Dam) produced from each population has also 
remained consistent through time, with the exception of several low abundance years for the 
Middle Fork population (Figure 9).  While the South Fork population produces more “out-
migrants” than the Middle Fork population, there appears to be little difference in production of 
smolt equivalents between the two populations.  This is likely due to larger individual size and 
higher survival of Middle Fork out-migrants. 
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Figure 8.  Summer steelhead out-migrant abundance estimates by population and migratory 
year.   

 

Figure 9. Summer steelhead smolt equivalent (smolts at John Day Dam) abundance estimates by 
population and migratory year. 
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Figure 10. Mean fork length of fall migrant steelhead emigrating past four trap sites in the John 
Day River basin.  Error bars are 95% confidence intervals. 

 

 

Figure 11. Mean fork length of spring migrant steelhead emigrating past four trap sites in the 
John Day River basin.  Error bars are 95% confidence intervals. 
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Figure 12. Estimated age composition of summer steelhead out-migrants captured at the 
Mainstem (MS), South Fork (SF), Middle Fork (MF), and North Fork (NF) John Day River traps.  
Age composition for migratory year 2017 is compared with the prior 11 years. Error bars 
represent 95% confidence intervals. 

Juvenile Chinook Capture and Tagging 

 Out-migrant abundance of Chinook during 2017 was consistent with most prior years.  
The Middle Fork population continued to rebound from the lowest production observed during 
migration year 2015.  Out-migrant production from the Middle Fork during 2017 was 
comparable with the long-term mean for this population (Figure 15).  While Chinook smolt 
equivalent production from the Middle Fork rebounded, smolt equivalent production from the 
Upper Mainstem population remained significantly less than peak production levels observed 
during migration years 2012 and 2013 (Figure 16).  
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Figure 13. Chinook fall parr (October-February) migrant abundance estimate at the Upper 
Mainstem trap site by migratory year.  Error bars are 95% confidence intervals.  The trap was 
not operated during fall 2006 and 2007. 

 

Figure 14.  Chinook fall parr (October–December) migrant abundance estimates at the Middle 
Fork trap site by migratory year.  Error bars are 95% confidence intervals.  The trap was not 
operated during fall 2006 and fall 2008. 
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Figure 15. Chinook out-migrant abundance estimates by population and migration year. 

 

Figure 16. Chinook smolt equivalent (estimated smolts at John Day Dam) estimates by 
population and migratory year. 
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Productivity Monitoring 
  

Estimates of steelhead smolts-per-spawner for the South Fork and Middle Fork 
populations both show declining rates of per-capita production with increasing spawner 
abundance.  While there are as yet too few years of data available for either population to 
develop stock-recruit relationships, there appears to be a comparable density-dependent 
influence on smolt production in both steelhead populations (Figure 17).    

Evidence for density dependent production is also present in the Upper Mainstem 
Chinook population (Figure 19), but is much weaker in the Middle Fork Chinook population 
(Figure 18).  Indeed, a nearly 7-fold range in production has been observed for the Middle Fork 
population at low spawner abundance (circa 100 redds); indicating that density-independent 
factors have a larger influence on production in this population.  Maximum stream temperature 
remains the most important density-independent production factor for Chinook.  

 

 

 

Figure 17.  Estimated summer steelhead smolt equivalents per spawner for the South Fork and 
Middle Fork John Day River populations.   
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Figure 18.  Middle Fork John Day spring Chinook spring migrant smolts per redd for brood years 
2002–2015.  Error bars are 95% confidence intervals. 

 

Figure 19.  Upper Mainstem John Day spring Chinook spring migrant smolts per redd estimates 
for brood years 2002–2015.  Error bars are 95% confidence intervals. 
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Smolt-to-Adult Ratio Monitoring 

 

Smolt-to-adult ratio (SAR) for Chinook during the 2015 migratory year remained 
consistent with most prior years (Figure 20).  Conversely, steelhead SAR for the 2015 migration 
year was the lowest recorded since our PIT tagging of steelhead began during migratory year 
2004 (Figure 20).  Migratory year 2015 was also the first year in our data set during which 
Chinook SAR exceeded steelhead SAR.  It is possible that the earlier emigration timing of 
Chinook afforded better estuary and near shore ocean conditions than were present later during 
2015 when steelhead arrived.  Regardless of mechanism, the lowest observed tagging-estimated 
SAR for steelhead during the 2015 migratory year was corroborated by the lowest-observed 
South Fork John Day adult escapement estimate in 2017.  

 

Figure 20.  Smolt-to-adult survival of juvenile spring Chinook and summer steelhead tagged with 
Passive Integrated Transponder tags in the John Day River basin during smolt migration years 
2000–2015.  Survival is estimated from smolt passage at John Day Dam to adult detection at 
Bonneville Dam.  Error bars are 95% confidence intervals. 
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Tributary Habitat Status and Trends   

A complete analysis of the CHaMP habitat data collected in the South Fork and Middle Forks 
of the John Day River is beyond the scope of work for this contract.  We have coordinated with 
Project 2003-017-00 (Integrated Status and Effectiveness Monitoring Project) to ensure 
thorough analysis of CHaMP habitat data as the time-series grows and allows evaluation of 
temporal trend.  As an example, the CHaMP data were combined with fish abundance data for 
the Middle Fork John Day steelhead population to publish a life-cycle model (McHugh et al. 
2017).  This publication integrates multiple data streams, and used the CHaMP data to help 
predict the efficacy of different restoration strategies (e.g., in-channel large wood placement, 
riparian vegetation recovery, etc.). 

As the time-series grows, we will estimate egg to young-of-the-year survival, young-of-the-
year to parr survival, and parr-to-smolt survival.  As part of future contracts, we will use an 
information-theoretic framework to evaluate the relationship among habitat metrics (collected 
via the CHaMP protocol) and our estimates of fish survival at both a population and site scale.  
This analysis will help identify potential impairments that can be targeted for remediation. 

5. Discussion and Adaptive Management  
 

Adult steelhead escapement in the South Fork John Day River during 2017 did not meet the 
recovery goal for abundance.  Adult-smolt recruitment modeling of the South Fork John Day 
River indicates that maximum sustained production of smolts for this population is achieved at 
approximately 1,200 spawners.   

The 2015 smolt migration year marked the first time in our monitoring that SAR for Chinook 
has exceeded steelhead SAR.  Migration timing differences during 2015 may have contributed to 
this novel result.  Chinook migrated earlier than steelhead, as usual, which apparently afforded 
markedly higher survival rates during 2015.  Fall migrating Chinook parr, which wintered further 
downstream also had higher trap to dam survival during MY 2015, another unusual finding.  
These results suggest that fish wintering upstream (e.g., spring migrating Chinook, and spring 
migrating steelhead) were cued to migrate too late during this low-discharge year and “missed” 
the best migration and survival window.  The short window for successful migration 
demonstrates the importance of a diverse portfolio of life-history strategies.  The fall migrants 
out-produced the spring migrants, and hence buoyed the entire cohort, especially for the Upper 
Mainstem Chinook population.  From a monitoring perspective, these results demonstrate that 
continuing to track metrics such as the migratory timing of smolts is just as important as 
monitoring overall abundance. 

Since 2008 there has been a decline in the proportion of hatchery-origin spawners in the 
John Day River summer steelhead MPG.  This trend was preceded by declines in the proportion 
of hatchery steelhead smolts barge transported through the Columbia and Snake rivers.  Our 
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2017 results corroborate prior years and documents the first year that steelhead PHoS in the 
John Day River basin was at 0%.  The low PHoS was anticipated based on low barge transport 
fractions through the Snake River during spring 2015.  This correlation suggests that limiting 
smolt transportation in the Snake River to < 20% of the total smolt population may be able to 
produce 0% PHoS estimates in the John Day River during future years.  Of equal importance, low 
smolt transport fractions will also minimize straying of natural-origin Snake River adults, which 
are equally likely to stray into the John Day River when barged. 

Using CHaMP habitat data to predict capture efficiency for juvenile steelhead appeared 
effective during 2017.  This approach allowed us to estimate abundance at each site, while 
reducing our total number of site visits, and the total number of fish handled (“take”).  We will 
continue to refine this approach in 2018; and incorporate a subset of two-pass mark-recapture 
sites into an updated suite of models when predicting capture efficiency. 

We contributed to publication of a life-cycle model (LCM) manuscript in 2017 (McHugh et al. 
2017).  The LCM documented in this paper demonstrated that physical habitat manipulations in 
the Middle Fork John Day River will provide small benefits to steelhead abundance and 
productivity.  Maximizing shade, through restoration of vegetation or other means, is the most 
beneficial of the evaluated options for Middle Fork steelhead.  This LCM can form the basis of 
informed adaptive management in 2018 and beyond, and be a vehicle to better integrate our 
CHaMP, juvenile fish, and productivity monitoring data set with the project planning process 
employed by practitioners of habitat restoration. 
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Appendix A:  Use of Data, Products & Publications  
 

Viable Salmonid Population (VSP) indicator and metric data that support and feed ODFW’s 
Recovery Planning and BiOP reporting needs are summarized and compiled into a standard 
format (Coordinated Assessments Data Exchange Standard; (DES)) at the population level and 
stored in a central server location.  VSP data in DES format is quality checked, reviewed and 
approved for sharing by a data steward and the primary VSP data contact for each population(s).  
Upon reviewer approval, data in DES format is made available to the public and interested 
parties through upload on ODFW’s Salmon and Steelhead Recovery Tracker 
(http://odfwrecoverytracker.org/), NOAA’s Salmon Population Summary (SPS; 
https://www.webapps.nwfsc.noaa.gov/apex/f?p=261:home:0) database and StreamNet 
(http://www.streamnet.org/).   
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Appendix B:  Detailed Results  
 

Juvenile Salmonid Summer Rearing Monitoring 
Juvenile sampling of Oncorhynchus mykiss and O. tshawytscha has been conducted by 

the Columbia Habitat Monitoring Program (CHaMP) crew in the John Day River Basin since 
2011.   Since 2014, sampling has been limited to the Middle Fork John Day River (MFJDR) and 
South Fork John Day River (SFJDR) basins.  In 2016 and 2017, we varied our sampling protocol 
to decrease the amount of time and fish handling necessary to obtain accurate abundance 
estimates.  Using habitat and mark-recapture data, we modeled our capture efficiency to move 
from a 2-pass mark-recapture sampling protocol to a single pass sampling protocol.  For the 
majority of our sites, we have been employing a mark-recapture method to estimate 
abundance at each site.  This involves two sampling events to capture fish, by means of 
electroshocking or by snorkel herding.  On the first sampling event, captured fish are marked 
with a fin clip and released back into the site.  The second sampling event occurs between three 
and twenty-four hours later and involves handling all fish to determine if fish are newly 
captured or recaptures.  By creating a model to predict capture efficiency using habitat 
variables, we were able to sample only once without marking fish and use these data to 
estimate abundance.   

To create the model, we used data from 28 sites (14 from MFJDR, 14 from SFJDR) 
sampled in 2015 or 2016 using the mark-recapture method to determine capture efficiency at 
each site.  We also used habitat metric data collected at the same 28 sites to determine which 
metrics could predict capture efficiency.  We started by running a correlation matrix with 
variables we felt could potentially impact capture efficiency to remove variables which were 
auto-correlated.   Once we narrowed our usable metrics down, we used the remaining five 
metrics in a binomial logistic regression to determine which metrics would produce the best fit 
model to predict capture efficiency.  We ran the models separately for sites in the SFJDR and 
MFJDR. After comparing AIC values, we determined the best fit model for the MFJDR included 
percent boulder and conductivity.  The best fit model for the SFJDR included mean pool depth 
and mean fork length.  We then used a jackknife technique to validate the models and compare 
predicted vs observed values. 

During our juvenile monitoring in September and October 2017, we continued to use 2-
pass mark-recapture at 16 sites (5 were PIT tag study sites) to refine our model.  Five of these 
16 mark-recapture sites (CBW05583-051058, CBW05583-231026, CBW05583-461938, 
CBW05583-363890, and CBW05583-013322) were not scheduled to be sampled in 2017.  They 
were sampled as single pass sites in 2016 but we were unable to predict capture efficiency 
because at least one metric at each site fell outside of the model parameters.  At the remaining 
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18 sites, we conducted 1-pass sampling, then used our model to determine abundance.  
Abundance estimates were calculated for these 34 sites where juvenile O. mykiss were present 
(Table 2).  Tennessee Creek (Site ID: CBW05583-183666), Squaw Creek (Site ID: CBW05583-
186098), Summit Creek (Site ID: CBW05583-161522), and Dry Fork Clear Creek (Site ID: 
CBW05583-215794) were dry by September, so they were not sampled for fish.  No fish were 
found in Jackass Creek (Site ID: CBW05583-091762).  Abundance estimates were not calculated 
for juvenile O. tshawytscha due to a lack of recapture data; however, the number captured at 
sites in the MFJDR and SFJDR are reported in Table 3.  Juvenile O. mykiss were the most 
frequently observed salmonid in both the MFJDR and SFJDR.   

Survey reaches ranged from 120–400 m depending on the average bankfull width 
derived during CHaMP habitat surveys.  We surveyed 4.7 km of the MFJDR and SFJDR basins 
during the fall of 2017 (Table 1).  We captured a total of 1,744 O. mykiss and 144 O. 
tshawytscha juveniles (≥70 mm) plus 470 O. mykiss and 22 O. tshawytscha fry (<70 mm) during 
surveys.   

Scale samples were collected from a subset of fish at each site to determine ages of fish 
captured.  Due to amount of time needed to process scale data, age data of 2017 fish will be 
presented in the 2018 annual report.  Age data from 2016 is presented as an appendix in this 
report.      

Discussion/Conclusions  

Given delays in CHaMP data processing, we are still conducting estimates of juvenile 
abundance, as they rely on habitat metrics.  Mean fork length of juvenile steelhead in both the 
Middle Fork and South Fork populations increased significantly in 2017, as compared to the 
prior two years.  Increased mean size, most likely created by increased individual growth rate, is 
a plausible response to the decreased spawner density observed in the recent several years.  
Condition factor showed no significant difference from the prior two years in either population, 
however.  This suggests that condition factor of juvenile steelhead may be more influenced by 
density-independent factors, such as streamflow and temperature.  High stream flows and cool 
temperatures during spring 2017, the primary annual growth period, may have had a 
substantial influence on condition factor measured at the end of summer. 
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Table 1.  Site identification number, stream, subbasin, panel type, survey length and start/end coordinates for juvenile salmonid fish surveys 
conducted in the MFJDR and SFJDR basins from September to October 2017.  * Indicates sites where juvenile steelhead were PIT tagged to 
monitor growth, in-situ survival, and parr-to-smolt conversion probability. 

SiteID Stream Subbasin Panel Survey 
Length (m) 

Start Coordinates End Coordinates 
Latitude Longitude Latitude Longitude 

OJD03458-000505 Camp Creek  MFJDR Three1 120 44.56086 -118.82920 44.56030 -118.82822 
CBW05583-383986* Camp Creek  MFJDR Three2 120 44.56561 -118.84158 44.56530 -118.84063 
CBW05583-232178 Clear Creek MFJDR Three1 120 44.57961 -118.49815 44.57987 -118.49803 
CBW05583-469746* Davis Creek  MFJDR Three1 120 44.58685 -118.53804 44.58612 -118.53874 
CBW05583-518642 Deadwood Creek MFJDR Three1 120 44.76404 -118.77879 44.76408 -118.77780 
CBW05583-531698 Lemon Creek MFJDR Three1 120 44.68149 -118.61483 44.68231 -118.61486 
CBW05583-050162* Lick Creek  MFJDR Three1 120 44.64651 -118.79374 44.64606 -118.79274 
CBW05583-314610 Middle Fork John Day River MFJDR Three1 240 44.62176 -118.58071 44.62221 -118.57848 
OJD03458-000147 Middle Fork John Day River MFJDR Three1 400 44.70689 -118.81475 44.70500 -118.81187 
CBW05583-290034 Middle Fork John Day River MFJDR Three1 160 44.64103 -118.62894 44.63983 -118.62794 
CBW05583-353778 Middle Fork John Day River MFJDR Three1 280 44.65492 -118.68048 44.65370 -118.68072 
CBW05583-282354 Middle Fork John Day River MFJDR Three1 120 44.59337 -118.45228 44.59269 -118.45249 
CBW05583-013322 Slide Creek  MFJDR Three3 120 44.75132 -118.95076 44.75091 -118.95213 
CBW05583-316426 Slide Creek  MFJDR Three1 120 44.70441 -118.94039 44.70375 -118.93975 
OJD03458-000536* Vinegar Creek  MFJDR Three3 160 44.60464 -118.53027 44.60551 -118.52906 
CBW05583-381682* Vinegar Creek  MFJDR Three3 120 44.64281 -118.50401 44.64377 -118.50432 
CBW05583-134002 Bark Cabin SFJDR Three1 120 44.25636 -120.40490 44.25558 -119.40435 
CBW05583-054130 Deer Creek SFJDR Three1 120 44.20303 -119.36655 44.20304 -119.36507 
CBW05583-345970 Duncan Creek SFJDR Three1 120 44.30709 -119.36680 44.30739 -119.36530 
CBW05583-091762 Jackass Creek SFJDR Three1 120 44.34813 -119.51581 44.74136 -118.63140 
CBW05583-363890 Murderers Creek SFJDR Three3 120 44.26169 -119.27993 44.26124 -119.27937 
CBW05583-085362 Murderers Creek SFJDR Three1 120 44.26227 -119.23941 44.26244 -119.23842 
CBW05583-150898 Murderers Creek SFJDR Three1 120 44.26184 -119.24899 44.26177 -119.24816 
CBW05583-423282 Murderers Creek SFJDR Three1 120 44.27713 -119.34915 44.27713 -119.34915 
OJD03458-000032 Murderers Creek SFJDR Three1 120 44.27793 -119.32792 44.27805 -119.32648 
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CBW05583-437106 Murderers Creek SFJDR Three1 120 44.28659 -119.43759 44.28685 -119.43778 
CBW05583-231026 Murderers Creek SFJDR Three3 120 44.30635 -119.49666 44.30592 -119.49538 
CBW05583-460402 Murderers Creek SFJDR Three1 160 44.31588 -119.52268 44.31639 -119.52098 
OJD03458-000097 North Fork Wind Creek SFJDR Three1 120 44.27655 -119.58969 44.27737 -119.59601 
OJD03458-000532 South Fork Deer Creek SFJDR Three1 120 44.16515 -119.33849 44.16428 -119.33839 
CBW05583-461938 South Fork John Day River SFJDR Three3 200 44.32016 -119.55751 44.31852 -119.55699 
CBW05583-226674 South Fork Murderers Creek SFJDR Three1 120 44.25243 -119.33129 44.25243 -119.33124 
CBW05583-265074 South Fork Murderers Creek SFJDR Three1 120 44.26153 -119.41613 44.26118 -119.41489 
CBW05583-051058 Thorn Creek SFJDR Three3 120 44.29868 -119.33954 44.29859 -119.33957 
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Table 4.  Age data from scales collected from juvenile O. mykiss during the 2017 sampling season with 
mean, minimum, and maximum fork length (mm) of fish in each age group for the MFJDR and SFJDR. 
Scales only collected from fish ≥ 60mm.  

Subbasin Age Count Percent Mean Length 
(mm) 

Min Length 
(mm) 

Max Length 
(mm) 

MFJDR 0 25 5.1 66.68 60 81 
MFJDR 1 139 28.5 100.59 74 139 
MFJDR 2 47 9.6 144.60 112 180 
MFJDR 3 4 0.8 179.75 135 220 
SFJDR 0 62 12.7 67.68 60 80 
SFJDR 1 135 27.7 105.51 72 162 
SFJDR 2 69 14.1 148.20 117 235 
SFJDR 3 7 1.4 176.14 142 205 
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Productivity of Spring Chinook Salmon and Summer Steelhead 
   

At our Mainstem trap we captured 2,177 and PIT tagged 1,002 juvenile spring Chinook migrants 
during the fall/winter trapping period. During the spring period we captured 4,210, and PIT tagged 
3,599. We estimated that during the fall/winter period (Oct 2016–Jan 2017) 43,013 (95% CI, 38,208 – 
49,092) spring Chinook parr migrated past the trap. During the spring migration (February 2017 to June 
2017) we estimated 24,228 (95% CI, 21,521 – 27,652) age-1 spring Chinook out-migrated past the trap 
site. We also estimated that 30,390 (95% CI, 27,595 – 33,423) age-0 Chinook migrated past the trap site 
between May 11th and July 7th.  We estimated mean FL of juvenile Chinook captured during the 
fall/winter period was 96 mm, with a mean K of 1.09. Spring migrants prior to May 15th had a mean FL of 
99 mm with a mean K of 1.19. After May 15th when the migration shifts primarily to age-0 parr the mean 
FL was 87mm with a mean K of 1.25.  

At the South Fork trap we captured 176 juvenile Chinook over the entire season. Fall migrants 
had a mean FL of 100 mm and a mean K of 0.98. Spring migrants had a mean FL of 103 mm and a mean 
K of 1.07. We estimated that 969 (95% CI, 696 – 2,045) juvenile Chinook migrated past the trap site. 

At the North Fork trap site we captured 1,966 Chinook parr during the fall trapping period 
(between October 19th and December 2nd). During this fall trapping period we estimated that 32,778 
(95% CI, 26,252 – 41,152) smolts migrated past the trap. The mean observed FL was 81 mm with an 
average K of 1.03. During the spring trapping period we estimated that 22,817 (95% CI, 18,275 – 28,647) 
smolts migrated past the trap during. The mean observed FL was 86 mm with an average K of 1.11.  

At our Middle Fork trap we captured a total of 351 juvenile Chinook during fall (October 21st – 
December 6th) before the trap had to be shut down due to ice flows.  We estimated that 5,615 (95% CI, 
4,475 – 7,007) parr migrated past the trap during this period. During the spring trapping period 
(February 24th– June 16th, 2017) we captured 1,343. We estimated that 22,319 (95% CI, 15,130 – 33,013) 
Chinook smolts migrated past the trap during this period.  Mean FL of juvenile Chinook captured during 
the fall/winter was 89 mm with a mean K of 1.12. During the spring trapping period the mean FL of 
captured individuals was 98 mm with a mean K of 1.14.  

During the seining season (February 17th – May 22nd, 2017) we captured 2,031 Chinook smolts 
and PIT tagged 1,994.  We estimated 112,550 (95% CI, 85,774 – 157,616) smolts migrated through the 
seining reach during this time period.  Catch per unit effort indicated the peak smolt run occurred 
between late March and mid-April. Captured Chinook smolts had an average FL of 107 mm with an 
average condition factor of 1.12.  

Based on adult Spring Chinook redd counts and our smolt emigration abundance estimate, 
freshwater production of the Middle Fork was 51 smolts/redd (95% CI, 34 - 75) for the 2015 brood year.  
For the upper Mainstem population, freshwater production was estimated to be 31 smolts/redd (95% 
CI, 27 - 35) for the 2015 brood year. Basin wide, based on Chinook emigration through the seining reach, 
freshwater production was 69 smolts/redd (95% CI, 53 - 97) for the 2015 brood year. Basin wide there 
was strong evidence of a negative linear relationship between ln smolts/redd and the number of redds 
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(r2 = 0.70, P < 0.001). The residuals from these regressions, when plotted against brood year, showed no 
apparent temporal trend for any of the populations.  These data hence suggest no detectable change in 
freshwater productivity of these Chinook populations through our monitoring period.  

 

 

 

Figure 21.  Proportion of nights operated for each trap site by migration year. 
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Figure 22.  Fork length of fall migrant Chinook parr captured at four rotary screw trap sites in the John 
Day River basin.  Error bars are 95% confidence intervals.  Some traps were not operated during fall for 
migration years 2006 through 2008. 

 

  

Figure 23.  Condition factor of fall migrant Chinook captured at four rotary screw trap sites in the John 
Day River basin.  Error bars are 95% confidence intervals.  Some traps were not operated during fall for 
migration years 2006 through 2008. 
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Figure 24.  Condition factor of spring migrant Chinook captured at four rotary screw trap sites in the 
John Day River basin.  Error bars are 95% confidence intervals. 

 

 

Figure 25.  Fork length of spring migrant Chinook captured at four rotary screw trap sites in the John Day 
River basin.  Error bars are 95% confidence intervals. 
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Figure 26.  Estimated weekly number of juvenile spring Chinook migrating past rotary screw trap and 
seining operations in the John Day River basin during migratory year 2017.   

 

 

Figure 27.  Weekly catch per unit effort (CPUE, number/seine haul) of spring Chinook smolts captured 
while seining during 2017. 
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Figure 28.  Mean fork length and condition factor of juvenile Chinook captured seining the John Day 
River between river kilometers 274 and 296. Capture periods vary slightly but are generally between 
February and May of each migration year. Error bars are 95% confidence intervals.  No seining was 
conducted during migratory year 2011. 

 

 

Figure 29.  Average fork length for juvenile Chinook captured while seining the John Day River between 
river kilometers 274 and 296 vs. brood year redd count.  
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Figure 30.  Smolt abundance estimates from spring seining of juvenile spring Chinook salmon emigrating 
from the entire John Day River basin.  Estimates prior to the 2000 migration year are from Lindsay et al. 
(1986). 
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Figure 31.  Smolt per redd ratios based on recent and historic estimates of smolt abundance and census 
redd counts for spring Chinook salmon for the entire John Day River basin.  Historic estimates from the 
1978–1982 brood years are from Lindsay et al. (1986).   
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Figure 32.  The residuals from a regression of natural log Chinook smolts per redd versus basin-wide 
Chinook salmon redd abundance plotted against brood year. 
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Juvenile Steelhead Capture and Tagging 

 Collectively, we PIT tagged 2,794 juvenile summer steelhead during migration year 2017. Spring 
migration timing peaked during late April and early May at all trap sites.  At our Mainstem trap estimate 
that 55,831 (95% CI, 44,408 – 71,705) juvenile steelhead migrated past the Mainstem trap site over the 
trapping season.  Fall migrants had a mean FL of 133 mm, and a mean K of 1.01. Spring migrants had a 
mean FL of 153 mm with a mean K of 1.03. The age structure of steelhead migrants was 16% age 1, 70% 
age 2, and 14% age 3.  

At the Middle Fork trap we estimate a total of 22,321 (95% CI, 15,132 – 33,016) juvenile 
steelhead migrated past the trap site during the trapping period.  Mean FL of the spring migrants was 
163 mm with a mean K of 1.04. The age structure of steelhead migrants was 6% age-1, 53% age-2, and 
41% age-3.  Based on our adult summer steelhead redd counts and abundance estimates in the Middle 
Fork there were 6 out-migrant produced per spawner for the 2014 brood year (95% CI, 3–10). The 2015 
spawning year’s smolt per spawner estimate is incomplete and remains unreported because of the high 
proportion of age 3 smolts produced in this system. 

 At the North Fork trap site we estimate that 6,558 (95% CI, 4,133 – 9,889) steelhead migrated 
past the trap site. The mean FL of captured spring migrants was 124 mm with a mean K of 1.04. The age 
structure of the out-migrants was 33% age-1, 49% age-2, 17% age-3, and 1% age-4. 

At our South Fork trap site we estimate that 31,662 (95% CI, 26,622 – 36,954) juvenile steelhead 
migrated past the trap site during the trapping season. The mean FL of fall migrants was 123 mm with a 
mean K of 0.97. The mean FL of spring migrants was 147 mm with a mean K of 1.02.  The age structure 
of migrants was 39% age-1, 50% age-2, 10% age-3, and 1% age-4.  Based on adult summer steelhead 
redd counts and juvenile migrant abundance estimates in the South Fork we estimate a ratio of 34 out-
migrants per spawner (95% CI,18 - 101) for brood year 2015.  
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Figure 33.  Mean condition factor of fall out-migrant summer steelhead collected at four John Day River 
basin trap sites.  Error bars are 95% confidence intervals.  Not all traps were operated during fall for 
migration years 2006 through 2008. 

 

 

Figure 34.  Mean fork length of fall out-migrant summer steelhead collected at four John Day River basin 
trap sites.  Error bars are 95% confidence intervals.  Not all traps were operated during fall for migration 
years 2006–08. 
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Figure 35.  Mean condition factor of spring out-migrant steelhead collected at four John Day River basin 
trap sites.  Error bars are 95% confidence intervals. 

 

 

Figure 36.  Mean fork length of spring out-migrant steelhead collected at four John Day River basin trap 
sites.  Error bars are 95% confidence intervals. 
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Figure 37.  Estimated weekly number of summer steelhead migrating past rotary screw traps operated 
in the John Day River basin during migratory year 2017. 

 

Incidental Catch and Observations 

 We captured 18 non-target species and two non-target salmonid life stages in our rotary screw 
trap and seining sets during migration year 2017, including four adult steelhead; all were of wild origin. 
Additionally, 98 Chinook fry (<65mm) and 58 O. mykiss fry (<65mm) were enumerated and released.  
We captured 1,545 juvenile pacific lamprey of two morphologies (silver coloration with developed eyes, 
and brown coloration with less developed eye spots), and 2 adult pacific lamprey.  Other notable species 
captured included the introduced species bluegill, largemouth bass, and the invasive rusty crayfish.  
(Table 5). 
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  Trap Site   

Species MS MF NF SF Seine 
Wild Adult Steelhead (O. mykiss) 2 - - 1 1 
Hatchery Adult Steelhead (O. mykiss) - - - - - 
Chinook Fry (O. tshawytcha) 1 4 93 - - 
Steelhead Fry (O. mykiss) 17 1 31 9 - 
Bull Trout (Salvelinus confluentus) 1 1 2 - 1 
Sockeye Smolt (O. nerka) - - - - - 
West Slope Cutthroat (O. clarki lewisi) - - - - - 
Sucker species (Catostomus spp.) 4488 359 100 304 102 
Red Side Shiner (Richardsonius balteatus) 1233 35 41 355 3 
Dace species (Rhinichthys spp.) 203 27 291 16 3 
Pacific Lamprey (Entosphenus tidentata) 

     
Juvenile - No Developed Eyes 55 118 1251 16 2 

Juvenile - With Developed Eyes 39 3 47 14 - 
Adult - 1 1 - - 

Northern Pikeminnow (Ptychocheilus oregonensis) 1391 122 14 272 334 
Chiselmouth (Acrocheilus alutaceus) 387 1 - 9 47 
Brown Bullhead (Ameiurus nebulosus) 1 - - - 4 
Sculpin (Cottus spp.) 1 - 40 8 - 
Mountain White Fish (Prosopium williamsoni) 3 - - - 1 
Small Mouth Bass (Micropterus dolomieui) 32 69 2 - 13 
Large Mouth Bass (Micropterus salmoides) 22 - - - - 
Carp (Cyprinus carpio) - - - - 3 
Bluegill (Lepomis macrochirus) 14 - - - - 
Rusty Crayfish (Orconectes rusticus) 3414 - - 4058 17 
Signal Crayfish (Pacifastacus leniusculus) - 3 35 1 - 

 

Table 5.   Number of each fish species captured incidentally by site (19 October 2016 to 3 July 2017). 

PIT Tag Detections of Juveniles at Federal Columbia River Power System Facilities 

Table 6.  Number detected (N), first and last detection dates, and mean, standard error (SE) and range of 
travel time (days)  to John Day Dam during 2017 for spring Chinook and summer steelhead smolts PIT 
tagged at tagging sites in the John Day Basin. 

Species Site Group N 
Detection 

Dates 
50% 

Detected 
Travel Time (days) 

Mean SE 

Summer 
Steelhead 

South Fork Fall 5 4/9–5/25 4/30 117 11.9 
Spring 343 4/18–6/13 5/8 28 1.7 

Middle Fork Spring 146 4/26–6/21 5/9 15 0.9 

Spring 
Chinook 

Mainstem Fall 59 4/18–5/6 4/27 151 2.2 
Spring 268 4/20–6/20 5/1 41 1.5 

Seining Reach Spring 501 4/11–5/27 5/2 32 0.8 
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 Summer steelhead were tagged in three groups during the 2017 migratory year; at the South 
Fork trap during the fall and spring and at the Middle Fork trap during the spring.  Steelhead tagged at 
the South Fork trap during the fall were at large for an average of 158 days (SE 4.1) between tagging and 
detection at John Day Dam. Small sample size (n = 32) precluded survival estimates for South Fork fall 
migrants. The spring tag group from the South Fork were detected at John Day Dam an average of 20 
days (SE 2.5 days) after tagging and had an estimated survival of 45.1% (SE 7.32%) from 74 detections. 
Spring tagging group detections occurred at John Day Dam between April 19th and May 9th with 50% of 
them being recorded by May 13th. 

 The steelhead tagged at the Middle Fork trap during the spring had an estimated survival of 
28.2% (SE 5.6%) from 47 detections. These fish were at large for an average of 17 days between tagging 
and detection at the dam. Fifty percent of detections occurred by May 13th. 

PIT Tag Detection of Adults at Federal Columbia River Power System Facilities 

 Ninety-five spring Chinook were detected in 2017 at the Mainstem Columbia detection sites that 
were tagged as juveniles for the John Day river SAR estimate.   The recently completed SAR estimate for 
the 2015 migration year (discounting possible age-6 returns) was 5.9% (95% CI, 5.0% - 7.3).  The age 
structure of the returning Spring Chinook was 18% (17 fish) age 3, 76% (72 fish) age 4, and 6% (6 fish) 
age 5. Fifteen (16%) of the John Day origin returning adults were detected at sites upstream of the 
mouth of the John Day river. All of these fish were detected at McNary Dam.  

A total of 42 adult summer steelhead PIT tagged as juveniles at RST sites in the John Day basin 
were detected in the FCRPS in 2017.  All of these adults were first detected at Bonneville with 90% being 
detected at The Dalles Dam.  In total, 61% of all John Day steelhead were detected at McNary. 

A total of 65 returning steelhead were tagged as juveniles for the John Day basin SAR estimate 
for migratory year 2014. Of these, 42 (64%) were one-ocean fish and 24 (36%) were two-ocean fish. In 
2014, the SAR estimate for juvenile summer steelhead was 5.4% (95% CI, 3.6% -10.8%). 

Spring Chinook and summer steelhead originating from the John Day River basin have 
experienced similar SAR in recent years (Figure 32).  The SARs for each species from John Day Dam to 
the ocean and back to Bonneville Dam are significantly correlated (r = 0.87, P < 0.001).  The SAR for 
steelhead exceeded Chinook in all years. 

 

  

 

 

 

 



 

59 
 

Figure 38.  Relationship between point estimates of smolt-to-adult ratio (SAR) of summer steelhead and 
spring Chinook tagged with Passive Integrated Transponder tags in the John Day River basin during 
migration years 2004–2013.  SAR is estimated from smolt migration past John Day Dam to adult 
detection at Bonneville Dam.  The straight line denotes a 1:1 relationship between SAR of steelhead and 
Chinook. 

 

Table 7.  Detections of adult summer steelhead and spring Chinook salmon, originally PIT-tagged at 
rotary screw trap sites or by seining in the John Day basin, which returned to the Columbia River during 
2015, 2016, and 2017. 

  Summer Steelhead Spring Chinook 
  2015 2016 2017 2015 2016 2017 

John Day-origin PIT Tagged Adults 
Detected by FCRPS 108 42 52 120 95 55 

% Detected at Bonneville Dam: 99.1% 100% 96.2% 95.8% 100% 98.2% 
% Detected at The Dalles Dam: 78.7% 90.7% 76.9% 93.3% 95.8% 85.5% 

% Detected at McNary Dam: 63.0% 60.5% 59.6% 10.8% 15.6% 20.0% 
% Detected at Lower Granite Dam: 4.6% 7.0% 15.4% 6.7% 7.3% 14.6% 
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South Fork John Day Adult Steelhead Population Estimate 

Run-year specific adult steelhead estimates at Bonneville Dam ranged from a low of 468 to a 
high of 1,575.  We estimated 1,098 South Fork origin steelhead crossed Bonneville Dam during summer 
2017 en route to spawning in spring 2018. 

 

 

Figure 39.  Comparison of adult steelhead estimates for the South Fork John Day River population.  The 
spawning escapement estimates include both wild and hatchery origin adults and are derived from 
probabilistic spawning surveys in the South Fork population.  Bonneville Dam estimates are from 
detections of returning Passive Integrated Transponder tagged adults corrected by out-migrant 
population estimates at the South Fork John Day River rotary screw trap.  The horizontal dotted line 
denotes the National Oceanic and Atmospheric Administration’s recovery goal of 500 adults for this 
population. 
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Appendix C  

Category Subcategory Subcategory 
Focus 1 

Subcategory 
Focus 2 Specific Metric Title 

Classification of 
Ecological or Geological 
Attribute 

Habitat Type     
Channel Area Type - 
Channel Unit Summary 
Tier 2 

Classification of 
Ecological or Geological 
Attribute 

Habitat Type     Tier1 - Channel Unit 
Summary 

Classification of 
Ecological or Geological 
Attribute 

Habitat Type     Tier1 - Channel Unit Tier 1 
Summary 

Classification of 
Ecological or Geological 
Attribute 

Habitat Type     Tier2 - Channel Unit 
Summary 

Classification of 
Ecological or Geological 
Attribute 

Habitat Type     Tier2 - Channel Unit 
Summary Tier 2 

Fish Abundance of Fish Fish Life Stage: 
Adult - Spawner 

Fish Origin: 
Both 

Hatchery vs Wild 
Observations 

Fish Abundance of Fish Fish Life Stage: 
Adult - Spawner 

Fish Origin: 
Both 

Spawner Escapement 
Estimates By Hatchery or 
Wild Origin 

Fish Abundance of Fish Fish Life Stage: 
Adult - Spawner 

Fish Origin: 
Natural Spawner Abundance 

Fish Abundance of Fish Fish Life Stage: 
Juvenile - Migrant 

Fish Origin: 
Natural 

Abundance of Emigrating 
Salmonid Smolts 

Fish Age Structure:  Fish Fish Life Stage: 
Juvenile - Migrant   Smolt Age Composition 

Fish Age Structure:  Fish Fish Life Stage: 
Juvenile Fish   Juvenile Age Composition 

Fish Condition Factor     Smolt Condition Factor 

Fish Density of Fish Species Fish Life Stage: 
Juvenile - Parr   Juvenile Salmonid Reach 

Density 

Fish Density of Fish Species Fish Life Stage: 
Juvenile - Parr 

Fish Origin: 
Natural Juvenile Salmonid Density 

Fish Distribution of Fish 
Species 

Fish Life Stage: 
Juvenile - Parr   Juvenile Salmonid 

Distribution 

Fish Genetics: Fish Diversity, 
Fitness or Variation 

Fish Origin: 
Natural   Genetic diversity metrics 

(Fst, Fis, Fit, Gst, etc.) 

Fish Genetics: Fish Diversity, 
Fitness or Variation 

Fish Origin: 
Natural   Dendrogram 
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Fish 
Progeny-per-Parent 
Ratio (P:P) 
(Productivity) 

Fish Life Stage: 
RANGE: Adult to 
Juvenile 

  Freshwater Productivity 

Fish Spawning/Nesting Fish Origin: Both   Number of Observed 
Steelhead Redds 

Fish Spawning/Nesting Fish Origin: Both   Redd Density 

Fish Stray Rate Fish Origin: 
Hatchery   PHOS 

Fish Survival Rate: Fish Fish Life Stage: 
Adult - Returner 

Fish Origin: 
Natural Adult Survival 

Fish Survival Rate: Fish Fish Life Stage: 
Juvenile - Migrant 

Fish Origin: 
Natural Parr to Smolt Survival 

Fish Survival Rate: Fish 
Fish Life Stage: 
RANGE: Egg to 
Juvenile 

Fish Origin: 
Natural Egg-to-Smolt Survival 

Fish Survival Rate: Fish 
Fish Life Stage: 
RANGE: Juvenile to 
Adult 

Fish Origin: 
Natural Smolt-to-adult-Ratio 

Fish Survival Rate: Fish 
Fish Life Stage: 
RANGE: Juvenile to 
Adult 

Fish Origin: 
Natural Smolt-to-Adult Ratio 

Fish Timing of Life Stage: 
Fish 

Fish Life Stage: 
Juvenile - Migrant   Smolt Migration Timing 

Hydrology/Water 
Quantity Flow     Site Discharge 

Landscape Form & 
Geomorphology 

Abundance of Habitat 
Types 

Habitat Type: 
Channel:  Pools   Slow/Pool Count 

Landscape Form & 
Geomorphology 

Abundance of Habitat 
Types 

Habitat Type: 
Channel:  Pools   Slow/Pool Percent 

Landscape Form & 
Geomorphology 

Abundance of Habitat 
Types 

Habitat Type: 
Channel:  Riffles   Fast-Turbulent Count 

Landscape Form & 
Geomorphology 

Abundance of Habitat 
Types 

Habitat Type: 
Channel:  
Runs/Glides 

  Fast-NonTurbulent Area 

Landscape Form & 
Geomorphology 

Abundance of Habitat 
Types 

Habitat Type: 
Channels   Area - Channel Unit 

Summary 

Landscape Form & 
Geomorphology 

Abundance of Habitat 
Types 

Habitat Type: 
Channels   Area - Channel Unit 

Summary Tier 2 

Landscape Form & 
Geomorphology 

Abundance of Habitat 
Types 

Habitat Type: 
Channels   Area - Channel Unit Tier 1 

Summary 

Landscape Form & 
Geomorphology 

Abundance of Habitat 
Types 

Habitat Type: 
Channels   Count - Channel Unit 

Summary Tier 2 

Landscape Form & 
Geomorphology 

Abundance of Habitat 
Types 

Habitat Type: 
Channels   Count - Channel Unit Tier 1 

Summary 

Landscape Form & 
Geomorphology 

Abundance of Habitat 
Types 

Habitat Type: 
Channels   Volume - Channel Unit 

Summary 
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Landscape Form & 
Geomorphology 

Abundance of Habitat 
Types 

Habitat Type: 
Channels   Volume - Channel Unit 

Summary Tier 2 

Landscape Form & 
Geomorphology 

Abundance of Habitat 
Types 

Habitat Type: 
Channels   Volume - Channel Unit Tier 

1 Summary 

Landscape Form & 
Geomorphology 

Composition/Structure 
of Habitat Types 

Habitat Type: 
Channel:  Pools   Slow/Pool Average 

Residual Depth 

Landscape Form & 
Geomorphology 

Composition/Structure 
of Habitat Types 

Habitat Type: 
Channel:  Pools   Slow/Pool Volume 

Landscape Form & 
Geomorphology 

Composition/Structure 
of Habitat Types 

Habitat Type: 
Channel:  Riffles   Fast-Turbulent Volume 

Landscape Form & 
Geomorphology 

Composition/Structure 
of Habitat Types 

Habitat Type: 
Channel:  
Runs/Glides 

  Fast-NonTurbulent Volume 

Landscape Form & 
Geomorphology Density of Habitat Type Habitat Type: 

Channel:  Pools   Slow/Pool Area 

Landscape Form & 
Geomorphology Density of Habitat Type Habitat Type: 

Channel:  Pools   Slow/Pool Frequency 

Landscape Form & 
Geomorphology Density of Habitat Type Habitat Type: 

Channel:  Riffles   Fast-Turbulent Area 

Landscape Form & 
Geomorphology Density of Habitat Type Habitat Type: 

Channel:  Riffles   Fast-Turbulent Frequency 

Landscape Form & 
Geomorphology Density of Habitat Type Habitat Type: 

Channel:  Riffles   Fast-Turbulent Percent 

Landscape Form & 
Geomorphology Density of Habitat Type 

Habitat Type: 
Channel:  
Runs/Glides 

  Fast-NonTurbulent Count 

Landscape Form & 
Geomorphology Density of Habitat Type 

Habitat Type: 
Channel:  
Runs/Glides 

  Fast-NonTurbulent 
Frequency 

Landscape Form & 
Geomorphology Density of Habitat Type 

Habitat Type: 
Channel:  
Runs/Glides 

  Fast-NonTurbulent Percent 

Landscape Form & 
Geomorphology Density of Habitat Type Habitat Type: 

Channels   Frequency - Channel Unit 
Summary Tier 2 

Landscape Form & 
Geomorphology Density of Habitat Type Habitat Type: 

Channels   Frequency - Channel Unit 
Tier 1 Summary 

Landscape Form & 
Geomorphology Density of Habitat Type Habitat Type: 

Channels   Percent - Channel Unit 
Summary 

Landscape Form & 
Geomorphology Density of Habitat Type Habitat Type: 

Channels   Percent - Channel Unit 
Summary Tier 2 

Landscape Form & 
Geomorphology Density of Habitat Type Habitat Type: 

Channels   Percent - Channel Unit Tier 
1 Summary 

Landscape Form & 
Geomorphology 

Density of Instream 
Wood     Bankfull Large Wood 

Frequency per 100m 

Landscape Form & 
Geomorphology 

Density of Instream 
Wood     Wetted Large Wood 

Frequency per 100m 
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Landscape Form & 
Geomorphology Depth: Bathymetry     Average Depth Thalweg 

Exit 

Landscape Form & 
Geomorphology Depth: Bathymetry     

Average Depth Thalweg 
Exit - Channel Unit Tier 1 
Summary 

Landscape Form & 
Geomorphology Depth: Bathymetry     

Average Max Depth - 
Channel Unit Summary 
Tier 2 

Landscape Form & 
Geomorphology Depth: Bathymetry     

Average Max Depth - 
Channel Unit Tier 1 
Summary 

Landscape Form & 
Geomorphology Depth: Bathymetry     Average Residual Depth 

Landscape Form & 
Geomorphology Depth: Bathymetry     

Average Residual Depth - 
Channel Unit Tier 1 
Summary 

Landscape Form & 
Geomorphology Depth: Bathymetry     Centerline Depth Profile 

Filtered CV 

Landscape Form & 
Geomorphology Depth: Bathymetry     Centerline Depth Profile 

Filtered Mean 

Landscape Form & 
Geomorphology Depth: Bathymetry     Depth Thalweg Exit - 

Channel Unit Summary 

Landscape Form & 
Geomorphology Depth: Bathymetry     Max Depth - Channel Unit 

Summary 

Landscape Form & 
Geomorphology Depth: Bathymetry     Residual Depth - Channel 

Unit Summary 

Landscape Form & 
Geomorphology Depth: Bathymetry     Thalweg Depth Profile 

Filtered Mean 

Landscape Form & 
Geomorphology Depth: Bathymetry     Water Depth StdDev 

Landscape Form & 
Geomorphology 

Distribution of Habitat 
Type 

Habitat Type: 
Channel:  Pools   Slow/Pool Spacing 

Landscape Form & 
Geomorphology 

Distribution of Habitat 
Type 

Habitat Type: 
Channel:  Riffles   Fast-Turbulent Spacing 

Landscape Form & 
Geomorphology 

Distribution of Habitat 
Type 

Habitat Type: 
Channel:  
Runs/Glides 

  Fast-NonTurbulent Spacing 

Landscape Form & 
Geomorphology 

Distribution of Habitat 
Type 

Habitat Type: 
Channels   Spacing - Channel Unit 

Summary Tier 2 

Landscape Form & 
Geomorphology 

Distribution of Habitat 
Type 

Habitat Type: 
Channels   Spacing - Channel Unit Tier 

1 Summary 

Landscape Form & 
Geomorphology Edge/Density/Sinuosity Habitat Type: 

Channels   Sinuosity Via Centerline 

Landscape Form & 
Geomorphology Edge/Density/Sinuosity Habitat Type: 

Channels   Site Sinuosity 

Landscape Form & 
Geomorphology Elevation     Standard Deviation of the 

Detrended DEM 
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Landscape Form & 
Geomorphology Gradient     Site Water Surface 

Gradient 

Landscape Form & 
Geomorphology Gradient     Thalweg Depth Profile 

Filtered CV 

Landscape Form & 
Geomorphology Gradient     Water Surface Gradient 

Profile Filtered CV 

Landscape Form & 
Geomorphology Gradient     Water Surface Gradient 

Profile Filtered Mean 

Landscape Form & 
Geomorphology Length/Width/Area Habitat Type: 

Channels   Bankfull Volume 

Landscape Form & 
Geomorphology Length/Width/Area Habitat Type: 

Channels   Site Bankfull Area 

Landscape Form & 
Geomorphology Length/Width/Area Habitat Type: 

Channels   Site Length Bankfull 

Landscape Form & 
Geomorphology Length/Width/Area Habitat Type: 

Channels   Site Length Thalweg 

Landscape Form & 
Geomorphology Length/Width/Area Habitat Type: 

Channels   Site Length Wetted 

Landscape Form & 
Geomorphology Length/Width/Area Habitat Type: 

Channels   Site Wetted Area 

Landscape Form & 
Geomorphology Length/Width/Area Habitat Type: 

Channels   Thalweg to Centerline 
Length Ratio 

Landscape Form & 
Geomorphology Size: Wood Structure     Bankfull Large Wood 

Volume by Site 

Landscape Form & 
Geomorphology Size: Wood Structure     Bankfull Large Wood 

Volume by Tier1 

Landscape Form & 
Geomorphology Size: Wood Structure     

Bankfull Large Wood 
Volume in Fast-
NonTurbulent 

Landscape Form & 
Geomorphology Size: Wood Structure     Bankfull Large Wood 

Volume in Fast-Turbulent 

Landscape Form & 
Geomorphology Size: Wood Structure     Bankfull Large Wood 

Volume in Slow/Pools 

Landscape Form & 
Geomorphology Size: Wood Structure     Wetted Large Wood 

Volume by Site 

Landscape Form & 
Geomorphology Size: Wood Structure     Wetted Large Wood 

Volume by Tier1 

Landscape Form & 
Geomorphology Size: Wood Structure     

Wetted Large Wood 
Volume in Fast-
NonTurbulent 

Landscape Form & 
Geomorphology Size: Wood Structure     Wetted Large Wood 

Volume in Fast-Turbulent 

Landscape Form & 
Geomorphology Size: Wood Structure     Wetted Large Wood 

Volume in Slow/Pools 

Landscape Form & 
Geomorphology Species Cover Habitat Type: 

Channels   Fish Cover Composition 
Artificial 
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Landscape Form & 
Geomorphology Species Cover Habitat Type: 

Channels   
Fish Cover Composition 
Artificial - Channel Unit 
Tier 1 Summary 

Landscape Form & 
Geomorphology Species Cover Habitat Type: 

Channels   Fish Cover Composition 
LWD 

Landscape Form & 
Geomorphology Species Cover Habitat Type: 

Channels   
Fish Cover Composition 
LWD - Channel Unit Tier 1 
Summary 

Landscape Form & 
Geomorphology Species Cover Habitat Type: 

Channels   Fish Cover Composition 
None 

Landscape Form & 
Geomorphology Species Cover Habitat Type: 

Channels   
Fish Cover Composition 
None - Channel Unit Tier 1 
Summary 

Landscape Form & 
Geomorphology Species Cover Habitat Type: 

Channels   Fish Cover Composition 
Total 

Landscape Form & 
Geomorphology Species Cover Habitat Type: 

Channels   
Fish Cover Composition 
Total - Channel Unit Tier 1 
Summary 

Landscape Form & 
Geomorphology Species Cover Habitat Type: 

Channels   Fish Cover Composition 
Undercut 

Landscape Form & 
Geomorphology Species Cover Habitat Type: 

Channels   
Fish Cover Composition 
Undercut - Channel Unit 
Tier 1 Summary 

Landscape Form & 
Geomorphology Species Cover Habitat Type: 

Channels   Fish Cover Composition 
Vegetation 

Landscape Form & 
Geomorphology Species Cover Habitat Type: 

Channels   
Fish Cover Composition 
Vegetation - Channel Unit 
Tier 1 Summary 

Landscape Form & 
Geomorphology Width to Depth Ratio     Bankfull WidthToDepth 

Ratio Profile Filtered CV 

Landscape Form & 
Geomorphology Width to Depth Ratio     Bankfull WidthToDepth 

Ratio Profile Filtered Mean 

Landscape Form & 
Geomorphology Width to Depth Ratio     Wetted WidthToDepth 

Ratio Profile Filtered CV 

Landscape Form & 
Geomorphology Width to Depth Ratio     Wetted WidthToDepth 

Ratio Profile Filtered Mean 

Landscape Form & 
Geomorphology Width: Bankfull     

Bankfull Width 
Constriction Profile 
Filtered CV 

Landscape Form & 
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