THE

OREGON

PLAN for

Salmon and Watersheds

Status of Oregon Stocks of Coho Salmon, 2015

Report Number: OPSW-ODFW-2016-3

The Oregon Department of Fish and Wildlife prohibits discrimination in all of its programs and services on the basis of race, color, national origin, age, sex or disability. If you believe that you have been discriminated against as described above in any program, activity, or facility, please contact the ADA Coordinator at 4034 Fairview Industrial Drive SE, Salem, OR 97302 or call 503-947-6000.

This material will be furnished in alternate format for people with disabilities if needed. Please call 503-947-6000 to request.

Status of Oregon Stocks of Coho Salmon, 2015

Oregon Plan for Salmon and Watersheds
 Monitoring Report No. OPSW-ODFW-2016-3
 December 2016

Briana Sounhein
Eric Brown
Mark Lewis
Matt Weeber

Oregon Adult Salmonid Inventory \& Sampling Project Western Oregon Research and Monitoring Program Oregon Department of Fish and Wildlife

28655 Highway 34
Corvallis, OR 97333

Funds contributed in part by:
Sport Fish and Wildlife Restoration Program administered by the U.S. Fish and Wildlife Service; Pacific Salmon Treaty and Pacific Coast Salmon Recovery Fund administered by the National Marine Fisheries Service; and State of Oregon (General and Lottery Funds).

Citation: Sounhein, B., E. Brown, M. Lewis and M. Weeber. 2016. Status of Oregon stocks of coho salmon, 2015. Monitoring Program Report Number OPSW-ODFW-2016-3, Oregon Department of Fish and Wildlife, Salem, Oregon.

CONTENTS

Page
SUMMARY 1
INTRODUCTION 2
METHODS 3
Field Sampling 3
Data Analysis 5
RESULTS 8
Lower Columbia River Evolutionarily Significant Unit 9
Effort 9
Abundance 10
Distribution and Timing 13
Proportion Hatchery Fish 16
Oregon Coast Evolutionarily Significant Unit. 17
Effort 18
Abundance 18
Distribution and Timing 23
Proportion Hatchery Fish 29
Southern Oregon/Northern California Coasts Evolutionarily Significant Unit 30
Effort 30
Abundance 33
Distribution and Timing 34
Proportion Hatchery Fish 34
Acknowledgements 34
References 35
APPENDIX A (LCR Coho ESU) 37
APPENDIX B (OC Coho ESU) 39
APPENDIX C (SONCC Coho ESU) 44
APPENDIX D 45

FIGURES

Number Page

1. Coho salmon monitoring study area showing the populations, strata, and evolutionarily significant units. 4
2. Lower Columbia River Coho ESU estimated abundance of adult coho salmon spawning naturally by rearing origin for the 2002 through 2015 run years 12
3. A) Coho salmon density in GRTS surveys by lower Columbia River TRT population, 2015. B) Percentage of marked adult coho salmon in GRTS surveys by lower Columbia River TRT population, 2015 14
4. Cumulative frequency distribution of coho salmon in the Clackamas River population, 2015 run year 15
5. Run timing of live adult coho salmon in 2015 on GRTS spawning ground surveys in the Lower Columbia River Coho ESU 16
6. Oregon Coast Coho ESU estimated abundance of adult coho salmon spawning naturally by rearing origin for the 1990 through 2015 run years 22
7. Coho salmon density (AUC/mile) in GRTS surveys by Oregon Coast TRT population, 2015 26
8. Percentage of marked adult coho salmon in GRTS surveys by Oregon Coast TRT population, 2015 27
9. Cumulative frequency distribution of coho salmon in the Coquille River population, 2015 run year 28
10. Run timing of live adult coho salmon in 2015 on GRTS spawning ground surveys in the Oregon Coast Coho ESU 29
11. Distribution of coho salmon spawning habitat and the portion included in the current GRTS sampling frame for Oregon populations in the Southern Oregon/Northern California Coasts Coho ESU 3212. Southern Oregon/Northern California Coasts Coho ESU estimated abundanceof adult coho salmon spawning naturally by rearing origin for the 1994 through2015 run years33

TABLES

Number Page

1. Design criteria used to select GRTS sampling points for coho salmon spawning surveys 3
2. Lower Columbia River Coho ESU, GRTS spawning survey goals and results for number of surveys and 95% CI, 2015 run year 10
3. Lower Columbia River Coho ESU estimated abundance of adult coho salmon spawning naturally by ESU, stratum, and population in the 2015 run year compared to the previous 13 years 11
4. Lower Columbia River Coho ESU adult coho salmon occupancy (total \& wild) by population, stratum, and ESU for the 2015 run year and previous 5 year average (2010-14) 13
5. Distribution metrics for Lower Columbia River Coho ESU populations, 2015 run year 15
6. Oregon Coast Coho ESU, GRTS spawning survey goals, responses, and estimate precision by population, 2015 run year 19
7. Oregon Coast Coho ESU estimated abundance of adult coho salmon spawning naturally by ESU, stratum, and population for the 2015 run year compared to the previous 25 years 20
8. Oregon Coast Coho ESU adult coho salmon occupancy (total \& wild) by population, stratum, and ESU for the 2015 run year and previous 5 year average (2010-14). 24
9. Distribution metrics for Oregon Coast Coho ESU populations, 2015 run year 25
10. Southern Oregon/Northern California Coast Coho ESU, GRTS spawning survey goals, responses, and estimate precision by population, 2015 run year 30
11. Southern Oregon/Northern California Coasts Coho ESU estimated abundance of adult coho salmon spawning naturally in the 2015 run year compared to the previous 21 years 31

APPENDIX TABLES

Number Page
A-1. Results of randomly selected spawning ground surveys for coho salmon in the Oregon portion of the LCR Coho ESU, run year 2015 37
A-2. Number of unmarked adult coho salmon passed upstream of counting stations into areas without GRTS spawning surveys. Oregon portion of the LCR Coho ESU, run year 2015 37
A-3. Annual abundance estimates of naturally spawning wild adult coho salmon in the Oregon portion of the LCR Coho ESU, run years 2002 through 2015 38
B-1. Results of randomly selected spawning ground surveys for coho salmon in the OC Coho ESU, run year 2015 39
B-2. Comparison of 2015 run year wild adult coho salmon spawners in the Oregon Coastal Lakes populations based on GRTS surveys and calibrated standard surveys. 40
B-3. Estimates of adult coho salmon run size in the North Umpqua River derived through adjustment of Winchester Dam count 40
B-4. Annual abundance estimates of naturally spawning wild adult coho salmon in the Oregon Coast Coho ESU, run years 1990 through 2015. 41
C-1. Results of randomly selected spawning ground surveys for coho salmon in the Oregon portion of the SONCC Coho ESU, run year 2015. 44
C-2. Estimates of adult coho salmon run size in the Rogue River derived from Huntley Park seining and returns to Cole Rivers Hatchery, 1990 through 2015 44
D-1. Site status of 2015 GRTS samples in the Lower Columbia River Coho ESU by TRT population 45
D-2. Site status of 2015 GRTS samples in the Southern Oregon/Northern California Coasts Coho ESU by TRT population 45
D-3. Site status of 2015 GRTS samples in the Oregon Coast Coho ESU by TRT population 46
D-4. Adult coho salmon counts, densities (AUC/mile), and marked proportion information for valid GRTS surveys by population in the Lower Columbia River and Oregon Coast Coho ESUs during the 2015 spawning year 47
D-5. Percent of selected GRTS sites classified "Target Non-Response in three main categories 48

SUMMARY

This report summarizes the results of status and trend monitoring for Oregon's naturally spawning coho salmon, Oncorhynchus kisutch, through the 2015 run year (October 2015 through February 2016). Monitoring results include:

1. Abundance of naturally spawning coho salmon
2. Density (fish/mile) of naturally spawning coho salmon
3. Coho salmon spawn timing and distribution
4. Proportion of hatchery (marked) coho salmon in naturally spawning populations

Results in this report are based on data from randomly selected spawning surveys and other methods used in areas without adequate random surveys. Results for coho salmon standard spawning surveys and spawning surveys for other species are covered in data summaries and reports posted on an Oregon Department of Fish and Wildlife (ODFW) web page (see: http://odfw.forestry.oregonstate.edu/spawn/index.htm).

Monitoring occurs at three hierarchical spatial scales, as defined by the National Marine Fisheries Service (NMFS): Evolutionarily Significant Unit (ESU); stratum; and coho salmon population. There are three coho salmon ESUs located entirely or partially within the State of Oregon: the Lower Columbia River (LCR) Coho ESU; the Oregon Coast (OC) Coho ESU; and the Southern Oregon/Northern California Coast (SONCC) Coho ESU. This report summarizes results for coho salmon populations in the portion of each ESU within the State of Oregon.

In the Oregon portion of the LCR Coho ESU sufficient surveys were conducted in 2015 to meet the precision goal for the ESU, but not for any of the three strata or six sampled populations. The 2015 wild coho salmon spawner abundance for the LCR Coho ESU was the lowest observed in the 14 years of this monitoring effort, but only set new record lows for the Gorge Stratum and its two populations. The proportion of hatchery coho salmon on natural spawning grounds was 8.7% in 2015, a record low for the LCR Coho ESU. This is the third consecutive year of setting a new record low for hatchery fish. However, during the last three years we have not conducted random coho salmon surveys in the Youngs Bay and Big Creek populations, an area of traditionally high levels of hatchery spawners. Regional patterns in fish distribution, spawn timing, and hatchery proportion are apparent at both the stratum and population scales. Overall, coho salmon spawner run timing in 2015 was similar in duration and peak timing to previous years.

In the OC Coho ESU sufficient surveys were conducted to meet the precision goal for the ESU, 3 of 4 strata, and 4 of 21 populations (Necanicum, Beaver, Alsea and Siuslaw). Wild spawner abundance in the OC Coho ESU in 2015 was the lowest observed since 1999, but was higher than the 1990 through 1999 average abundance. There were no new record lows or highs in wild coho salmon abundance for any of the 24 populations or 5 strata. The proportion of hatchery fish on natural spawning grounds was 1.2% for the ESU as a whole. All naturally spawning coho salmon populations contained greater than 98% wild fish except the Salmon (94.6%), North Umpqua (94.1%) and South Umpqua (92.8%) populations. In 2015, densities of wild coho salmon spawners in random surveys were lower than the 5 year average in all 21
populations. Percentage of random surveys occupied by wild coho salmon was below the 5 year average in 16 of 21 populations. Overall, coho salmon spawner run timing in 2015 was similar in duration and peak timing to long-term averages; with peak spawning in mid to late December.

Inadequate funding and the need to update the sampling frame continue to hamper the monitoring of the Oregon portion of the SONCC Coho ESU. In 2015 no Generalized Random Tessellation Stratified (GRTS) surveys were conducted in the Oregon portion of this ESU. Monitoring of wild coho salmon spawners was based on the Huntley Park seining estimate. Wild coho salmon spawner abundance increased substantially in 2015 compared to the prior year, and was about a two thirds of the 1994 through 2014 average. The proportion of hatchery coho salmon spawning naturally in 2015 was higher than the previous six years, but below the 21 year average. Without GRTS surveys, fish distribution and spawn timing were not evaluated in 2015.

INTRODUCTION

Conservation and management of coho salmon, Oncorhynchus kisutch, in Oregon requires monitoring status and trend for a variety of population criteria. This is true if the populations are thriving or depressed. Collecting data during both conditions is valuable in the assessment and interpretation of current and historic population status. There are three coho salmon ESUs located entirely or partially within Oregon: the LCR Coho ESU (populations in Washington and Oregon); the OC Coho ESU (all populations in Oregon); and the SONCC Coho ESU (populations in Oregon and California). All three ESUs are currently listed as "Threatened" under the Federal Endangered Species Act (ESA). In addition, the LCR Coho ESU is listed as "Endangered" under the State of Oregon ESA.

Since the late 1940's spawning surveys for coho salmon were conducted in standard index areas along the Oregon coast to assess escapement trends on natural spawning grounds (Jacobs et.al. 2002). Beidler and Nickelson (1980) and Ganio et.al. (1986) reviewed the adequacy of this method to provide the level of monitoring needed for management of Oregon's coho salmon populations. Both reviews identified areas of concern and made recommendations to improve the monitoring of naturally spawning coho salmon in Oregon. In 1990, a stratified random sampling program was initiated to address these recommendations and provide annual estimates of the abundance of naturally spawning Oregon Coastal Natural (OCN) coho salmon. The OCN area covers Oregon coastal rivers from the mouth of the Columbia River south to Cape Blanco. Methods and results for this methodology are described in Jacobs and Nickelson (1998). This methodology was used for the 1990 through 1997 spawning seasons.

In 1998 ODFW established an integrated monitoring program for Oregon coastal salmonids as part of the implementation of the Oregon Plan for Salmon and Watersheds (OPSW) (Firman and Jacobs 2001). The program consists of three geographically extensive monitoring projects based on spatially balanced random site selection, as well as one project that intensively monitor specific sub-basins. The three geographically extensive projects are based on the U.S. Environmental Protection Agency's, Environmental Monitoring and Assessment Program. These projects incorporate a GRTS sampling design to establish a shared set of random, spatially balanced sample points (Firman and Jacobs 2001, and Stevens 2002). Beginning in 1998 the GRTS design replaced the stratified random sampling method for the selection of spawning
ground surveys in the OC Coho ESU. The GRTS design was also implemented in the SONCC Coho ESU in 1998 and expanded to include the LCR Coho ESU in 2002. With some modifications, this methodology has been in use since those dates.

METHODS

Boundaries and population structures of the Oregon coho salmon ESUs, as defined by the NMFS Technical Recovery Teams (TRT), are presented in Figure 1. Although, the OPSW adult coho salmon monitoring design for the OC and SONCC Coho ESUs was established in 1998 as a 27-year study, changes in technology and salmon management, as well as the need for data at finer geographic scales, resulted in alterations to the initial design (Table 1). Significant changes in methods are discussed in Lewis et.al. (2009). Additionally, beginning in 2014, survey effort in the OC ESU was reduced from an average of about 550 (2007-2013) to about 350 (2014 on) sites a year. In 2015 abundance estimates for the Clatskanie and Clackamas populations are stratified, to account for biases created by high hatchery influence areas. The following two sub-sections give a brief description of field sampling protocols and data analysis methods.

Field Sampling

The assessment and establishment of new spawning surveys is completed during an initial set-up visit between February and September. Once landowner permissions are obtained, a surveyor visits the site to determine if it contains coho salmon spawning habitat, and if there are any barriers to adult coho salmon migration. If the site has habitat and is accessible, a new spawning ground survey is established that encompasses the GRTS point. Spawning surveys are generally one mile in length, but actual boundaries are determined by the site's specific characteristics. Surveys are bound by significant landscape features including: beginning or ending of coho salmon spawning habitat; confluences with other streams; and other long-term features such as, bridges, roads, waterfalls, etc. Specific methods used in spawning survey setups can be found in the annual site verification procedures manual on the Oregon Adult Salmonid Inventory and Sampling (OASIS) project web page.

Table 1. Design criteria used to select GRTS sampling points for coho salmon spawning surveys. Sample points $=$ scale for precision targets; Estimate $=$ finest scale for population estimates; MA = monitoring area (\sim Stratum); Popn = TRT population; Group $=$ basin or group of basins; H, M, L = High, Medium, and Low quality habitats; Frame scale $=$ scale of stream coverage used to select GRTS points; $X X$ Frame $=$ last two digits of the year the frame was developed; $\mathrm{H}: \mathrm{W}=$ data source for rearing origin (Hatchery vs. Wild) determinations.

Run year	Geographic scale		Habitat type (HT)	Frame scale	Points by Habitat Type from			H:W
	Sample points	Estimate			98 Frame	05 Frame	Current Frame**	
1998	MA	Group	M\&H	1:100K	M\&H			Scales
1999-04	MA	Group	M\&H	1:100K	M\&H			Fin Marks
2005	MA	Popn	M\&H*	1:100K	M\&H	L (Ump.)		Fin Marks
2006	Popn	Popn	All	1:100K	M\&H	L (All)		Fin Marks
2007-15	Popn	Popn	All	1:24K			All	Fin Marks

[^0]** = Major frame revision in 2007 with a frame refinement in 2013.

Figure 1. Coho salmon monitoring study area showing the populations, strata, and evoluntionarily significant units.

Coho salmon spawning ground surveys are conducted weekly from October through January, or longer as needed. The goal is to obtain at least one valid survey (in which flow and visibility allow for counts of live fish, dead fish, and redds) before coho salmon start spawning and two consecutive valid surveys with no live coho salmon observed to conclude each site for the season. Although the goal is to conduct a weekly survey, current protocols allow for up to 11 days between valid survey visits. Surveys that go more than 11 days between valid visits are considered to be out of rotation. When conditions permit, crews continue survey sites that have gone out of rotation and try to maintain their rotation throughout the remainder of the season.

Surveys are conducted by walking up-stream and recording the number of live and dead fish, redds observed, and categorical information on weather, visibility, and stream flow. Surveyors record the species of live fish observed and try to determine if the adipose fin has been clipped (Ad Clip) on coho salmon. Hatchery coho salmon smolts released in Oregon streams are marked with an Ad Clip and a subset of these are marked with a coded wire tag prior to release. For carcasses, surveyors record species, gender, Mid Eye to Posterior Scale (MEPS) length, and any fin clips, marks, or tags. A scale sample is collected from every tenth coho salmon carcass, and both a scale sample and snout are collected from every Ad Clip carcass to recover the coded wire tag, if present. There are a few exceptions to the scale sampling protocol; the first exception is in the lakes system in the OC Coho ESU (Siltcoos, Tahkenitch, and Tenmile) where a scale sample is collected from every twenty-fifth coho salmon carcass. The second exception is in the LC Coho ESU, specifically in the Sandy, Lower Gorge and Hood populations where scale samples are collected from every coho salmon carcass. Because coho salmon spawners in these populations could be from hatchery smolts released without an Ad Clip mark, scale samples are used to determine rearing origin. Finally, the tail is cut off of every sampled carcass to preclude repeat sampling on subsequent survey visits. Further details on the spawning survey methods can be found in the annual spawning survey procedures manual on the OASIS project web page.

Data Analysis

The trapezoidal Area-Under-the-Curve (AUC) technique is used to estimate the number of coho salmon adults spawning in a given stream segment throughout the spawning season (Jacobs et al. 2002). Adult coho salmon are defined as fish measuring over 430 mm MEPS. Spawning coho salmon are assumed to have an average spawning life of 11.3 days across the ESU and season (Beidler and Nickelson 1980, Perrin and Irvine 1990). Live coho salmon observations are adjusted for the estimated bias associated with visual counts by surveyors (Solazzi 1984). Peak counts and the contribution of hatchery spawners are estimated as in Jacobs et al. (2002). Spawner density is calculated for each population, as the total adult coho salmon AUC / total length (miles) for all surveys. Abundance and timing calculations are only done with GRTS surveys which meet criteria for a qualified survey. Post season, all GRTS surveys are evaluated to determine if they meet the criteria to qualify for inclusion in population estimates. The criteria to determine if a site is a qualified survey are based on minimizing the possibility for an inaccurate AUC calculation. This could occur if the chance of a coho salmon migrating to the site, spawning and dying in the period between survey visits is considered too high. The standard method for determining whether a site was successfully surveyed for the year involves three steps. First, the critical period is determined for each stratum. Critical period is defined as the time interval in which 90% of the live coho salmon were seen in a stratum for the year. Second, the number of days between valid surveys is calculated for each site for the year. Finally, the
"gaps" between survey dates are evaluated to determine if they meet the criteria for minimizing the chance of missing coho salmon in the live counts. The standard criteria used are: no gap of 16 or more days, and no more than one gap between 12 and 15 days during the critical period.

In 2015, an unusually low number of surveys meeting the standard inclusion criteria resulted in an inadequate sample size for calculating abundance estimates in some populations. This was the second consecutive year with this issue, after occurring only once in the previous 10 years. Starting in 2015 a new survey inclusion assessment was introduced using a stepwise process. The first step involves determining if the overall ESU unsuccessful survey rate (i.e. the number of sites not meeting the standard criteria divided by the total number of sites attempted) is greater than the recent average, plus one standard deviation. If so, then the critical period is relaxed to the time interval in which 75% (down from 90%) of the live coho salmon were seen in a stratum for the year. The unsuccessful survey rate from previous years is reported in Appendix Table D-5. This new relaxed criterion is then applied to all sites and populations within the ESU. If after applying the first step, a population's unsuccessful survey rate is still too high, then a second step allows for greater survey gaps. The relaxed gap criteria used are: no gap of 17 or more days (up from 16 days), and no more than two gaps of 12 to 16 days (up from 1 gap of 12 to 15 days) during the critical period. If after applying the first two steps a population's unsuccessful survey rate is still too high, then a third step applies one of two additional relaxed criterion scenarios. Scenario one involves relaxing the critical period even further, to the time interval in which 67% of the live coho salmon were seen in a stratum for the year, and at the same time allowing the relaxed gap criterion described in the second step. Scenario two involves the relaxed 75% critical period of the first step, but allows for larger survey gaps: no survey gap of 18 or more days, and no more than two gaps of 12 to 17 days. If a population's unsuccessful survey rate did not change under either scenario in the third step, then the estimate for that population includes the surveys that met criteria under the second step, plus the remaining surveys not meeting the inclusion criteria, by using peak count instead of AUC abundance.

In 2015, the OC ESU had a 56% unsuccessful survey rate. The previous seven year average rate, plus one standard deviation, was 36%. Therefore, under first step of the new survey inclusion assessment all sites and populations were re-evaluated using the 75% relaxed critical period criterion. Seven (Tillamook Bay, Yaquina River, Alsea River, Coos Bay, Coquille River, Floras Creek, and MS Dependents) of the 21 OC ESU populations still had an unsuccessful survey rate greater than their seven year average, plus one standard deviation, and were therefore subject to survey gap relaxation under the second step. This resulted in two populations (Yaquina and Alsea) achieving unsuccessful survey rates less than their average, plus one standard deviation. However, the other five populations were unaffected by the relaxed gap criterion and where therefore subject to the third step of the inclusion assessment. However, no further relaxation of the critical period or gap criteria helped improve survey inclusion rates. Therefore, estimates in these five populations included all surveys, using AUC per mile for sites that did pass inclusion criteria and peak count per mile in the remaining sites.

Coho salmon spawning escapement is calculated using the Horvitz-Thompson estimator (Diaz-Ramos et al. 1996). Variance estimates are calculated using the local mean variance estimator. Escapements are calculated for the ESU as a whole, each stratum, and each independent population or group of dependent populations (Jacobs et al. 2002). Beginning in

2015 a fourth spatial scale of estimation, sub-population, was added in some LCR Coho ESU populations. The need for finer scale estimates became apparent during analysis of an erratic pattern in proportion of hatchery origin spawners (pHOS) estimates for the Clatskanie coho population. Plympton Creek is a tributary of Westport Slough in the Clatskanie coho population, containing 1.8% of the coho salmon spawning habitat in the population. In the two years between 2002 and 2008 that Plympton Creek was selected as a GRTS sample site the Clatskanie coho population averaged $51 \% \mathrm{pHOS}$, and in the four years it wasn't sampled pHOS averaged 2%. Starting in 2009, Plympton Creek became an annual GRTS sampling location, due to the sampling frame update. Between 2009 and 2015, Plympton Creek accounted for 83.3% of the Ad Clipped and 1.6% of the not clipped coho salmon carcasses recovered in the Clatskanie coho population. Based on these results we conducted stratified estimates of coho salmon abundance and pHOS in the Clatskanie coho population using two strata, Plympton Creek and the rest of the population. In the stratified estimates for 2009 through 2015 Plympton Creek averaged 1.8% of the coho salmon spawning habitat, 2.4% of the estimated total coho salmon abundance, but 15.0% of the total coho salmon carcasses sampled. The six fold over-representation of coho salmon carcasses and the high proportion of hatchery coho salmon in Plympton Creek creates a positive bias in the estimated pHOS for the Clatskanie coho population. Therefore, Clatskanie abundance and pHOS estimates were re-calculated for all years using the stratified approach. Those results are reported here, and we are evaluating other areas for similar issues, including Eagle Creek in the Clackamas coho population and Cedar Creek in the Sandy coho population.

Temporal distribution of spawners is based on monthly 10-day periods (1st to 10th, 11th to 20th, and 21 st to end of month). Number of live adult coho salmon is summed by geographic scale, and 10-day period, then normalized for effort by dividing the sum of live adults by the corresponding sum of miles surveyed. Occupancy is defined as a peak of at least four adult coho salmon per mile. Occupancy of coho salmon spawning habitat is calculated as the percentage of qualified GRTS spawning surveys that are occupied each year. This calculation is done at three geographic scales: ESU, stratum, and population. Three additional metrics are used to evaluate the distribution of fish within each population. The metrics are calculated for total coho salmon in populations with at least 10 qualified GRTS spawning surveys for the year. Presence is calculated as the percentage of qualified GRTS spawning surveys with at least one coho salmon observed. Area-Over-the-Curve (AOC) and minimum proportion of sites comprising 80% of the population abundance ($\mathrm{P}_{80 \%}$) are calculated from cumulative abundance curves of sites ranked from highest to lowest abundance (Walters and Cahoon 1985, Peacock and Holt 2012).

The proportion of hatchery origin spawners (pHOS) is normally calculated at the population, rather than site scale to maximize the likelihood of reaching our minimum sample size goal of 10 fish with known Ad Clip status. Ad Clip status is most reliably determined from carcasses, but is recorded for live fish when possible. If Ad Clip status is available for at least 10 carcasses then pHOS is calculated from the carcass data, if not, the live fish data is included. A single pHOS value for all sites in a population precludes evaluation of the spatial distribution of coho salmon by rearing origin. Therefore, pHOS values were calculated for each GRTS site at the finest of four geographic scales which met the minimum sample size goal of 10 fish with known Ad Clip status. The four spatial scales are; GRTS site, $6^{\text {th }}$ field hydrologic unit code (HUC), $5^{\text {th }}$ field HUC, and TRT population. Distribution metrics (AOC, $\mathrm{P}_{80 \%}$, and Presence)
were calculated separately for hatchery and wild coho salmon in populations with at least 50% GRTS site and at least 90% finer than population scale pHOS values.

In some areas, GRTS surveys for coho salmon spawners are not conducted, the number of qualified surveys is not adequate, or there is no long-term data from GRTS surveys. In these areas, other sources of monitoring data are used to document the number of adult coho salmon spawners. These include dam counts, mark-recapture estimates, and regressions of standard survey data to abundance estimates. There are currently five such locations in the LCR Coho ESU including: one dam (River Mill on the Clackamas River), three hatchery weirs (Big Creek, Klaskanine, and Sandy hatcheries), and one OPSW life-cycle monitoring site (Bonnie Falls). In these five locations, counts of adult coho salmon passed up-stream are obtained and added to the estimated abundance of coho salmon spawners for areas where GRTS surveys are conducted.

In the OC Coho ESU, GRTS spawning ground surveys are conducted in most areas, except for the North Umpqua River above Winchester Dam and above the Alsea Hatchery weir. For the 2015 run year, Winchester Dam counts, and results of GRTS surveys below the dam, were used to document the number of adult coho salmon spawners in the North Umpqua. The Winchester Dam count is adjusted for coho salmon collected and retained at Rock Creek Hatchery, and for angler harvest of coho salmon in the North Umpqua River above Winchester Dam. The count of coho salmon passed above the Alsea Hatchery weir is added to the spawning survey estimate for the Alsea population. In 2015 funding limitations prevented GRTS surveys from being conducted in the three coastal lake populations. Coho salmon spawner abundances for the lake populations are calculated using regressions of long-term standard surveys to historic mark-recapture studies and habitat measurements for those locations (Jacobs et.al. 2002).

Implementation of a GRTS based sample for spawning coho salmon in the SONCC Coho ESU has been hampered by funding and a need to review the sample frame. Issues and limitations of the current frame for the SONCC Coho ESU are reviewed in Lewis et.al. (2009). No GRTS coho salmon spawning surveys were conducted in 2015, which is the eighth year since 1998 that budget constraints have precluded GRTS surveys for coho salmon spawners in this ESU. In addition, during the 2006 through 2008 season's budget constraints resulted in GRTS sampling at half the rate of previous years. Long-term monitoring of coho salmon spawners in the SONCC Coho ESU currently relies on a mark-recapture calculation based on adipose fin clipped coho salmon. Details of this method are described in Jacobs et.al. (2002); the method provides an estimate of adult coho salmon escapement to the Rogue basin above Huntley Park (river mile 8). These estimates are adjusted for coho salmon collected and retained at Cole Rivers Hatchery, as well as angler harvest in the Rogue basin above Huntley Park.

RESULTS

Results of monitoring coho salmon spawning escapements in Oregon basins are summarized by the three coho salmon ESUs. Results include data from GRTS spawning ground surveys and data from other sources where GRTS surveys are not conducted. Results are reported in four categories: Effort, Abundance, Distribution and Timing, and Proportion Hatchery Fish. Spatially, results are reported by ESU, stratum, and constituent coho salmon
populations. The individual components that comprise the results can be found in Appendices A, B, and C (by coho salmon ESU). Ancillary data is presented in Appendix D.

Weather and stream flow patterns across the monitoring area for the 2015 season were highly variable. Temperatures were generally near normal for the entire survey season, October 2015 through January 2016. Precipitation was below average in October and November, nearly double average in December, and then average to slightly low in January 2016. As a result of these weather patterns, stream flows followed generally normal patterns through November, including the typical mid-to late November high flow event. However, during December stream flows were well above average from the $6^{\text {th }}$ through the $26^{\text {th }}$. Stream flows returned to a more normal pattern in January 2016. This pattern was generally conducive to conducting salmon spawning ground surveys except during December 2015. This resulted in in many sites, especially in the OC Coho ESU not meeting the standard criteria for inclusion in estimates.

Lower Columbia River Evolutionarily Significant Unit

In 1999 , naturally produced coho salmon in the lower Columbia River basin were listed as "endangered" by the State of Oregon, and in 2005 were listed as "threatened" under the federal ESA (NMFS 2005). The LCR Coho ESU includes populations in both Oregon and Washington. The Oregon portion of the LCR Coho ESU is comprised of eight coho salmon populations (Meyers et al. 2006). They include all naturally spawning populations in Columbia River tributaries (excluding areas above Willamette Falls) downstream of and including the Hood River (Figure 1). Spawning habitat above dams, ladders, or hatcheries (where counts of fish are available) are not surveyed or expanded to for GRTS abundance estimates. These include: above Klaskanine Hatchery (Youngs Bay population), above Big Creek Hatchery (Big Creek population), above Sandy Hatchery (Sandy population), above Bonnie Falls (Scappoose population), above River Mill Dam (Clackamas population), and above Powerdale Dam (Hood River population) (Figure 3). Marmot Dam on the Sandy River was removed in 2007 and Powerdale Dam on the Hood River in 2010. Through 2006, estimates for the Sandy population were a combination of GRTS estimates for the area below Marmot Dam and the dam count, plus any wild fish released above Marmot Dam by Sandy Hatchery staff. Coho salmon spawning estimates for the Sandy population since 2007 have been based on GRTS surveys, plus any wild fish released in Cedar Creek above Sandy Hatchery. Logistic and budget issues currently preclude conducting GRTS surveys in the Hood River above the old Powerdale Dam site. Starting with the 2010 season wild coho salmon estimates for the Hood River population will not include an estimate of coho salmon spawning in the Hood River above the old Powerdale Dam site. Between 2002 and 2009 these fish accounted for about half of the Hood River population wild coho salmon spawner abundance. Beginning in 2013, random coho salmon surveys were not conducted in the Big Creek and Youngs Bay populations due to budget constraints.

Effort

Spawning surveys were generally conducted from the beginning of October 2015 to the end of January 2016. The number of spawning surveys successfully conducted during the 2015 season was 94% of the goal for the ESU and ranged from 65% to 150% by population (Table 2). This is the tenth year of selecting points at the population scale and the third year of not sampling the Youngs Bay and Big Creek populations. The number of successful surveys in 2015 was
slightly greater than the prior five year average (excluding the Youngs Bay and Big Creek populations, which were not sampled in 2015). The 96 sites successfully surveyed in 2015 comprised 63% of the sites originally drawn, compared to a prior six year average of 61%. Some sites were not surveyed in 2015 due to access denials and site inaccessibility. In addition, some sites were surveyed but due to long gaps (≥ 16 days) or multiple gaps of $12-15$ days between survey dates, did not meet the estimation criteria. On average, 7% of the sites drawn each year in the LCR Coho ESU are outside of coho salmon spawning habitat (non-target). In 2015, 1.3\% of the sites drawn were non-target (Table D-1). The number of sites successfully surveyed in 2015 met the goal in four of six populations monitored. The precision target (95% confidence less than $\pm 30 \%$ of the estimate) was only met at the ESU level in 2015 (Table 2).

Table 2. Lower Columbia River Coho ESU, GRTS spawning survey goals and results for number of surveys and 95% C.I., 2015 run year. Target response sites are reaches within coho salmon spawning habitat which were successfully surveyed.

Stratum	Population	Goal	Target response				95\% CI as percent of point estimate (goal is +/-30\%)			
			2015	2010 to 2014			2015	2010 to 2014		
				Avg.	Min.	Max.		Avg.	Min.	Max.
Coast	Youngs Bay	0	0	11	0	22	n.a.	80\%	41\%	114\%
	Big Creek	0	0	5	0	10	n.a.	68\%	36\%	107\%
	Clatskanie	18	22	20	13	28	35\%	31\%	21\%	40\%
	Scappoose	20	13	18	15	24	46\%	52\%	43\%	58\%
	Total	38	35	53	38	75	n.a.	26\%	21\%	32\%
Cascade	Clackamas	30	30	21	16	29	60\%	39\%	33\%	45\%
	Sandy	30	25	25	21	28	51\%	58\%	31\%	78\%
	Total	60	55	46	40	50	33\%	37\%	26\%	58\%
Gorge	Lower Gorge	2	3	3	1	4	98\%	74\%	9\%	128\%
	Hood	2	3	4	1	6	191\%	66\%	23\%	93\%
	Total	4	6	6	4	8	88\%	65\%	64\%	66\%
ESU Total		102	96	105	87	133	23\%	22\%	16\%	29\%

n.a. $=$ Not available (no surveys were selected in the population, less than 2 surveys stayed in rotation, or the abundance estimate was 0).

Abstract

Abundance Wild coho salmon spawner abundance in 2015 was the lowest on record since monitoring began in 2002 (Figure 2 and Table 3). This estimate does not include the Big Creek and Youngs River populations which typically contribute about 7\% of the ESU's total wild abundance, but have not been monitored since 2013. Results by population were all below average with the two Gorge Stratum populations setting new record low wild coho salmon abundances (Table 3). The data in Table 3 and Appendix Table A-3 reflect the new stratified abundance estimation methodology for the Clatskanie population. Clatskanie coho salmon estimates back to 2002 were

recalculated as stratified estimates, resulting in a slight decrease in the average (2002-2015) Clatskanie total estimate from 1,003 to 973 . While there was little change in the total estimate the stratification did resolve the over-representation of hatchery fish in the rearing origin samples. This resulted in an increase in the 2002 through 2015 average Clatskanie wild fish estimate from 868 to 936 , and a decrease in the average hatchery estimate from 135 to 37 .

Table 3. Lower Columbia River Coho ESU estimated abundance of adult coho salmon spawning naturally by ESU, stratum, and population in the 2015 run year compared to the previous 13 years.

Geographic scale ESU/Stratum/Population		Spawning year			
		2015	2002 to 2014		
			Avg.	Min.	Max.
Lower Columbia River ESU (Oregon Only)	Wild Hatchery \% Hat.	$\begin{gathered} \hline 2,988 \text { * } \\ 285 \text { * } \\ 8.7 \% \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{7 , 5 9 3} \\ & \mathbf{3 , 4 0 6} \\ & \mathbf{2 9 . 7 \%} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4,026 \\ 1,223 \\ \mathbf{1 0 . 6 \%} \\ \hline \end{gathered}$	$\begin{array}{r} \hline 21,849 \\ 12,230 \\ \mathbf{6 5 . 6 \%} \end{array}$
Coast Stratum *	Wild Hatchery \% Hat.	n.a. n.a. n.a.	$\begin{gathered} \hline \hline \mathbf{1 , 8 3 6} \\ 838 \\ \mathbf{2 7 . 8 \%} \\ \hline \end{gathered}$	$\begin{array}{r} \hline \hline 1,140 \\ 89 \\ 4.9 \% \\ \hline \end{array}$	$\begin{aligned} & \mathbf{3 , 9 9 3} \\ & \mathbf{3 , 4 2 0} \\ & \mathbf{7 4 . 4 \%} \\ & \hline \end{aligned}$
Youngs Bay *	Wild Hatchery \% Hat.	$\begin{gathered} \text { n.a. } \\ \text { n.a. } \\ \text { n.a. } \\ \hline \end{gathered}$	$\begin{gathered} \hline 119 \\ 510 \\ 67.7 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 \\ 14 \\ 21.9 \% \\ \hline \end{gathered}$	$\begin{gathered} 411 \\ 2,506 \\ 92.1 \% \\ \hline \end{gathered}$
Big Creek *	Wild Hatchery \% Hat.	$\begin{gathered} \text { n.a. } \\ \text { n.a. } \\ \text { n.a. } \\ \hline \end{gathered}$	$\begin{gathered} \hline 300 \\ 317 \\ 46.0 \% \\ \hline \end{gathered}$	98 66 15.5%	$\begin{gathered} 792 \\ 936 \\ 89.8 \% \\ \hline \end{gathered}$
Clatskanie	Wild Hatchery \% Hat.	$\begin{gathered} \hline 240 \\ 9 \\ 3.6 \% \\ \hline \end{gathered}$	$\begin{gathered} 990 \\ 39 \\ 5.3 \% \\ \hline \end{gathered}$	$\begin{gathered} 167 \\ 0 \\ 0.0 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 3,246 \\ 151 \\ 22.3 \% \\ \hline \end{gathered}$
Scappoose	Wild Hatchery \% Hat.	$\begin{gathered} 487 \\ 0 \\ 0.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 703 \\ 11 \\ 1.8 \% \\ \hline \end{gathered}$	$\begin{gathered} 210 \\ 0 \\ 0.0 \% \\ \hline \end{gathered}$	$\begin{gathered} 1,960 \\ 67 \\ 9.9 \% \\ \hline \end{gathered}$
Cascade Stratum	Wild Hatchery \% Hat.	$\begin{gathered} \hline \hline 2,227 \\ 251 \\ \mathbf{1 0 . 1 \%} \end{gathered}$	$\begin{aligned} & \hline \hline \mathbf{5 , 0 1 7} \\ & 1,992 \\ & 24.3 \% \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{2 , 1 5 7} \\ 139 \\ \mathbf{3 . 5 \%} \end{gathered}$	$\begin{array}{r} 16,612 \\ 10,871 \\ 71.2 \% \end{array}$
Clackamas	Wild Hatchery \% Hat.	$\begin{gathered} 1,784 \\ 230 \\ 11.4 \% \end{gathered}$	$\begin{aligned} & 3,452 \\ & 1,868 \\ & 28.1 \% \\ & \hline \end{aligned}$	$\begin{gathered} 1,301 \\ 50 \\ 1.5 \% \\ \hline \end{gathered}$	$\begin{array}{r} 10,670 \\ 10,871 \\ 75.8 \% \\ \hline \end{array}$
Sandy	Wild Hatchery \% Hat.	$\begin{gathered} 443 \\ 21 \\ 4.5 \% \end{gathered}$	$\begin{gathered} 1,565 \\ 135 \\ 10.3 \% \end{gathered}$	$\begin{gathered} 382 \\ 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 5,942 \\ 515 \\ 57.4 \% \\ \hline \end{gathered}$
Gorge Stratum	Wild Hatchery \% Hat.	$\begin{gathered} 34 \\ 25 \\ 42.4 \% \end{gathered}$	$\begin{gathered} \hline \hline 528 \\ 812 \\ 53.8 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 41 \\ 192 \\ 26.5 \% \end{gathered}$	$\begin{aligned} & \hline \mathbf{1 , 5 2 5} \\ & \mathbf{2 , 5 5 5} \\ & \mathbf{7 2 . 9 \%} \\ & \hline \end{aligned}$
Lower Gorge Tribs.	$\begin{array}{r} \text { Wild } \\ \text { Hatchery } \\ \text { \% Hat. } \\ \hline \end{array}$	$\begin{array}{r} \hline 30 \\ 18 \\ 37.5 \% \\ \hline \end{array}$	$\begin{gathered} \hline 308 \\ 327 \\ 44.5 \% \\ \hline \end{gathered}$	$\begin{gathered} 96 \\ 10 \\ 6.2 \% \\ \hline \end{gathered}$	$\begin{gathered} 920 \\ 1,512 \\ 85.2 \% \\ \hline \end{gathered}$
Hood River	Wild Hatchery \% Hat.	4 7 63.6%	$\begin{gathered} \hline 268 \\ 486 \\ 54.5 \% \\ \hline \end{gathered}$	$\begin{gathered} 41 \\ 0 \\ 0.0 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 1,262 \\ 1,298 \\ 85.3 \% \end{gathered}$

[^1]

* The estimates for 2013 to 2015 do not include Big Creek and Youngs Bay populations, and are therefore incomplete. These two populations combined account for an average of 12% of the total estimate for the ESU (about 7% of the wild, and 27% of the hatchery components).

Figure 2. Lower Columbia River Coho ESU estimated abundance of adult coho salmon spawning naturally by rearing origin for the 2002 through 2015 run years.

Abundance of naturally spawning hatchery coho salmon in 2015 set a record low at 285, about 8% of the 13 year average for the LCR Coho ESU (Table 3). This total does not include the Young Bay and Big Creek populations which typically account for 27% of the naturally spawning hatchery fish in the LCR Coho ESU. However, in the six sampled populations the abundance of hatchery fish was near the record low (Table 3). The Scappoose population has now had nine consecutive years with an estimate of zero hatchery coho salmon spawners.

The LCR Coho ESU and most of the Oregon populations have displayed year to year variability in abundance, but no strong indication of trend over the 14 years of monitoring (Figure 2; Appendix Table A-3). The relatively short (14 year) time-series of abundance estimates, and the sudden shift between 2014 and 2015 from very high to very low wild coho salmon abundance complicates trend detection for the LCR Coho ESU. Abundance over the 14 years shows some indication of an increasing trend in five of the six populations monitored in 2015, with the Hood River population showing indications of a decreasing trend (Appendix Table A-3). While none of the indications of trend are strong, the Clatskanie, Sandy and Scappoose populations appear to have the strongest indications of a trend in wild coho salmon spawner abundance.

Distribution and Timing

Approximately 29% of the valid sites surveyed in 2015 were occupied, well below the 77% in 2014 and about half the previous five year average (Table 4). Occupancy rates by population in 2015 were similar, with all six populations much lower than 2014 and the 5 year average. In 2015, 27% of sites in the LC Coho ESU were occupied and had confirmed wild coho salmon present, which is the lowest on record for this monitoring effort, and about half the previous 5 year average of 51% (Table 4). The relatively low stream flows present in 2015 for much of October may have been a partial factor in these low occupancy results, though low abundance is likely the major contributing factor.

Coho salmon densities (AUC/mile) in 2015 were highest in the Lower Gorge population and lowest in the Hood River population (Figure 3A). Coho salmon density in 2015 was less than 15% of the previous five year average in all populations except the Scappoose which was 56% (Appendix Table D-4). Small sample size for pHOS calculations limited evaluation of distribution metrics within a population to 4 of 6 populations (Table 5). Coho salmon were most evenly distributed in the Clatskanie and Scappoose populations, and least evenly distributed in Sandy and Clackamas populations (Table 5). None of the six populations had the desired samples sizes for calculating distribution by rearing origin. The Clackamas population was closest to the needed samples sizes and was analyzed as an example. Wild coho salmon were distributed more evenly in the Clackamas than hatchery fish, but the comparison is hampered by sample size issues (Figure 4). As an example, 4 of the 30 sites contained approximately 90% of the hatchery fish, but it took 9 of 30 sites to reach 90% of the wild fish (Figure 4).

Table 4. Lower Columbia River Coho ESU adult coho salmon occupancy (total \& wild) by population, stratum, and ESU for the 2015 run year and previous 5 year average (2010-14). Occupancy $=$ a peak of 4 or more adult coho salmon per mile. Wild Occupied $=$ occupied sites with at least one wild coho salmon. N.A = Not available, population was not monitored.

ESU, Stratum, and TRT Population	2015 No. sites surveyed	5 yr . avg. No. sites surveyed	Total coho salmon		Wild coho salmon	
			2015 \% Occupied	$\begin{gathered} \hline 5 \mathrm{yr} . \\ \text { avg. } \% \\ \text { Occupied } \end{gathered}$	2015 \% Occupied	$\begin{gathered} 5 \mathrm{yr} . \\ \text { avg. \% } \\ \text { Occupied } \\ \hline \end{gathered}$
Lower Columbia R. ESU	96	105	29\%	57\%	27\%	51\%
Coast Stratum	35	53	34\%	64\%	34\%	56\%
Youngs Bay	0	11	n.a.	37\%	n.a.	21\%
Big Creek	0	5	n.a.	63\%	n.a.	38\%
Clatskanie River	22	20	32\%	84\%	32\%	78\%
Scappoose Creek	13	18	38\%	50\%	38\%	48\%
Cascade Stratum	55	45	24\%	47\%	24\%	42\%
Clackamas River	30	21	23\%	50\%	23\%	45\%
Sandy River	25	25	24\%	44\%	24\%	39\%
Gorge Stratum	6	6	50\%	84\%	17\%	76\%
Lower Gorge tribs.	3	3	67\%	88\%	0\%	78\%
Hood River	3	4	33\%	83\%	33\%	78\%

Figure 3. A) Coho salmon density in GRTS surveys by lower Columbia River TRT population, 2015. B) Percentage of marked adult coho salmon in GRTS surveys by lower Columbia River TRT population, 2015.

Figure 4. Cumulative frequency distribution of coho salmon in the Clackamas population, 2015 run year.

Table 5. Distribution metrics for Lower Columbia River Coho ESU populations, 2015 run year. Total fish metrics were calculated for populations with at least 10 sites, hatchery and wild metrics were calculated for populations with adequate site specific pHOS data. Populations with uniform distribution would have $\mathrm{AOC}=0.5, \mathrm{P}_{80 \%}=0.8$, and $\%$ sites with fish $=100 \%$.

Lower Columbia populations	\# of Sites	Total coho salmon			Wild coho salmon			Hatchery coho salmon		
		AOC	$\mathrm{P}_{80 \%}$	\% sites with fish	AOC	$\mathrm{P}_{80 \%}$	\% sites with fish	AOC	$\mathrm{P}_{80 \%}$	\% sites with fish
Youngs Bay	0	--	--	--	--	--	--	--	--	--
Big Creek	0	--	--	--	--	--	--	--	--	--
Clatskanie River	22	0.26	0.49	82\%	--	--	--	--	--	--
Scappoose Creek	13	0.22	0.35	77\%	--	--	--	--	--	--
Clackamas River	30	0.13	0.21	43\%	--	--	--	--	--	--
Sandy River	25	0.12	0.20	44\%	--	--	--	--	--	--
Lower Gorge tribs.	3	--	--	--	--	--	--	--	--	--
Hood River	3	--	--	--	--	--	--	--	--	--

[^2]

Figure 5. Run timing of live adult coho salmon in 2015 on GRTS spawning ground surveys in the Lower Columbia River Coho ESU.

For the 2002 through 2014 spawning years, peak counts of live coho salmon in the LCR Coho ESU typically occurred during the first 10 days of November with an average of 5 adult coho salmon per mile surveyed, and very few live coho salmon were seen after early December (Figure 5). Run timing in 2015 was very similar to the prior 13 year average timing for the ESU, with the peak in early-November at 1.0 adult coho salmon per mile surveyed. Timing in the LCR Coho ESU is much earlier than in the OC Coho ESU, which typically peaks in mid to late December (Figure 10). Although the timing pattern in 2015 was near normal, densities were very low throughout the season (Figure 5). Stream flow patterns in 2015 were generally amenable to both fish access to spawning grounds and survey methods, except during the month of December. The approximately 20 day period of consistently above normal stream flows from December $6^{\text {th }}$ through $26^{\text {th }}$ likely compromised our ability to detect later spawning coho salmon. However, it is unlikely they had a major impact on abundance estimates as this period is generally after the majority of coho salmon spawning in the LRC Coho ESU (Figure 5).

Proportion Hatchery Fish

In 2015, pHOS in the LCR Coho ESU was the lowest on record (8.7%) for the period 2002 through 2015 (Table 3). However, due to budget cuts the monitoring since 2013 has differed from previous years in that surveys were not conducted in two populations that usually
have high hatchery influence (Big Creek and Youngs Bay). These two populations typically contribute approximately 27% of all hatchery fish spawning in the LCR ESU. Assuming their combined 2015 contribution was equal to the average from 2002 through 2012, the pHOS for the LCR Coho ESU would be 10.9% which would still be near the lowest pHOS in the 14 years of monitoring. Five of the six monitored LCR populations had 2015 pHOS values below the previous 13 year average. The only population with a 2015 pHOS above average is Hood River (Table 3). The pHOS values discussed above and reported in Figure 2 and Table 3 are population totals, which in the Coast and Cascade strata are a combination of GRTS surveys (including stratification) and wild coho salmon passed above counting stations. Data for the separate components are reported in Appendix Tables A-1 and A-2, and displayed in Figure 3B.

The LCR Coho ESU 2015 pHOS of 8.7% is high compared to the other Oregon coho salmon ESUs, where pHOS was 1.2% for the OC Coho ESU (Table 7) and 4.7% for the SONCC Coho ESU (Table 11). The Clackamas, Lower Gorge and Hood River populations all had greater than 10% hatchery fish in the naturally spawning populations (Table 3 and Figure 3B). The pHOS rates observed in 2015 are consistent with results for the previous coho salmon generation (3 years) for four of six sampled populations in the LCR Coho ESU. The 2015 pHOS rate in the Clackamas population higher than the previous 3 year average (11.4% versus 8.6% average), and in the Clatskanie population was less than half the 3 year average (3.6% versus 8.8% average). Once again the Scappoose population had the lowest pHOS rate in the ESU with no hatchery origin fish observed in 2015 (Table 3 and Figure 3B). In the Clatskanie population, Plympton Creek contained 0.4% of wild and 33% of the hatchery abundance for the entire population in 2015 (Appendix Table A-1). The Clackamas coho population also had large differences in the distribution of hatchery and wild fish in 2015. Clackamas coho salmon abundance is enumerated in three components, above North Fork Dam, Eagle Creek (above confluence with North Fork Eagle Creek), and below North Fork Dam excluding the Eagle Creek sub-area. Approximately 97% of the hatchery origin spawners in the Clackamas population were located in the Eagle Creek sub-area, while 96% of the wild fish were located either above North Fork Dam (83\%) or below North Fork dam but outside the Eagle Creek sub-area (13\%).

Oregon Coast Evolutionarily Significant Unit

In 2008, the Oregon Coast Coho ESU was listed as "threatened" under the federal ESA (NMFS 2008). The OC Coho ESU is comprised of five strata: North Coast, Mid-Coast, Lakes, Umpqua, and Mid-South Coast. Each stratum is composed of populations characterized as independent or dependent based on their historical structure, potential for persistence, and degree of isolation from neighboring populations (Lawson et al. 2007, Wainwright et al. 2008). There are anywhere from three to six independent populations within each stratum (Figure 1), and spawning escapement estimates are made for each independent population. Dependent populations are grouped together by stratum, and spawning escapement estimates are made for each stratum aggregate. Four of the five strata are monitored using a spatially balanced random sample design (Stevens 2002). These four strata are the North Coast, Mid-Coast, Umpqua, and Mid-South Coast. Abundance estimates for the Lakes stratum are made by expanding counts in standard index reaches (Jacobs et.al. 2002). Finally, GRTS sampling in the OC Coho ESU began in 1998 in all areas except the North Umpqua population, where GRTS sampling began in 2005 and ended in 2011. Monitoring of coho salmon spawners in this population is predominately
based on Winchester Dam counts. For long-term consistency, the Winchester Dam count is used as the North Umpqua population spawner abundance estimate.

Effort

The 2015 spawning season is the ninth year using the updated sample frame (Table 1), which includes sampling all potential coho salmon spawning habitat based on a 1:24,000-scale digital line graph of streams. The sample frame was refined in 2013, with the most significant change in the Floras population. A total of 288 sites were successfully surveyed in 2015, which is well below the average of the previous five years (Table 6). Starting in 2014 sampling effort was reduced from a goal of 527 to 255 sites, due to budget constraints. The 288 sites successfully surveyed in 2015 were 113% of the goal (Table 6), and 12 of 21 populations were at or above the sites goal. However, the very difficult December 2015 weather conditions resulted in the use of relaxed criteria for a successful survey in five populations (Table 6). The OC Coho ESU successful survey rate in 2015 was somewhat improved by the use of the relaxed criteria.

Spawning surveys were generally conducted from mid-October 2015 to the end of January 2016. The 288 sites successfully surveyed in 2015 are 58% of the sites originally drawn, which is much better the previous five year average of 45%. Some sites were not surveyed in 2015 due to access denials and site inaccessibility. In addition some sites were surveyed, but due to not meeting the standard or relaxed criteria, these sites could not be used in the abundance estimate. Since implementing use of the $1: 24 \mathrm{k}$ frame in 2007 , on average 15.5% of the sites drawn each year in the OC Coho ESU are outside of coho salmon spawning habitat (non-target). In $2015,8.6 \%$ of the sites drawn were non-target (Appendix Table D-3). Periodically crews identify areas that contain spawning habitat and are accessible to coho salmon, but are not within the sampling frame. These target sites that are outside the frame are noted for future exploration and addition to the frame when it is updated. Typically frame updates occur about every 5 to 10 years, and until that time no adjustment is made to the coho salmon abundance estimate for the target areas outside the sampling frame. Adjusting for non-target sites inside the frame, but not for target sites outside the frame will result in a negative bias in the coho salmon abundance estimate. The most recent frame update was in 2013.

Generally good survey conditions, except for in December 2015, resulted in 16 of 26 spatial sampling scales (21 populations, 4 strata, 1 ESU) meeting the goal for number of surveys (Table 6). Results for meeting the precision goal of a 95% CI no more than $+/-30 \%$ of the point estimate were much lower than the results for number of surveys. In 2015 the precision goal was achieved for the ESU, 3 of 4 strata, and 4 of 21 populations (Table 6). This is comparable to previous years when on average the precision goal was met for 7 of 30 spatial sampling scales.

Abundance
Wild coho salmon spawner abundance in the OC Coho ESU decreased substantially in 2015 to the lowest level recorded since 1999 (Figure 6 and Table 7). In 2015, all five strata were substantially below the prior 25 year average abundance (Table 7). Results for individual populations were also low in 2015, with 23 of the 24 populations below average. Interestingly, only the North Umpqua abundance, which is based on a dam count, was above average in 2015.

Table 6. Oregon Coast Coho ESU, GRTS spawning survey goals, responses, and estimate precision by population, 2015 run year. Target response sites are reaches within coho salmon spawning habitat which were successfully surveyed.

Stratum	Population	Goal	Target response				$95 \% \mathrm{CI}$ as percent of point estimate (goal is $+/-30 \%$)			
			2015	2010 to 2014			2015	2010 to 2014		
				Avg.	Min.	Max.		Avg.	Min.	Max.
North Coast	Necanicum	9	18	16	11	21	24\%	56\%	20\%	95\%
	Nehalem	14	15	26	13	34	45\%	37\%	25\%	51\%
	Tillamook *	14	22	23	14	31	56\%	57\%	36\%	78\%
	Nestucca	14	12	21	12	31	43\%	49\%	38\%	57\%
	NC Depend.	10	6	17	9	21	104\%	61\%	39\%	89\%
	Total	61	73	103	59	131	25\%	26\%	20\%	39\%
Mid-Coast	Salmon	15 ${ }^{\text {\# }}$	9	13	7	17	56\%	51\%	23\%	122\%
	Siletz	11	18	22	12	29	37\%	34\%	24\%	47\%
	Yaquina	11	19	21	10	27	46\%	42\%	34\%	55\%
	Beaver	3	3	7	5	8	24\%	55\%	33\%	100\%
	Alsea	11	18	26	11	32	26\%	26\%	22\%	31\%
	Siuslaw	11	14	23	12	32	28\%	30\%	21\%	34\%
	MC Depend.	11	7	16	11	20	62\%	58\%	42\%	93\%
	Total	73	88	128	78	158	16\%	16\%	14\%	19\%
Lakes	Siltcoos	0	0	13	0	21	n.a.	45\%	39\%	56\%
	Tahkenitch	0	0	4	0	7	n.a.	58\%	40\%	69\%
	Tenmile	0	0	12	0	18	n.a.	37\%	29\%	48\%
	Total	0	0	29	0	44	n.a.	26\%	24\%	31\%
Umpqua	L. Umpqua	19	18	25	18	30	56\%	32\%	28\%	34\%
	M. Umpqua	19	15	20	14	28	79\%	46\%	29\%	64\%
	N. Umpqua	4	3	11	1	36	n.a.	82\%	81\%	83\%
	S. Umpqua	19	19	25	17	30	73\%	54\%	37\%	69\%
	Total	61	55	81	51	116	43\%	33\%	22\%	43\%
Mid-South Coast	Coos *	17	21	27	18	35	51\%	41\%	23\%	50\%
	Coquille *	17	24	24	15	34	33\%	42\%	34\%	53\%
	Floras *	15	22	9	1	18	53\%	43\%	25\%	60\%
	Sixes	7	3	9	1	19	40\%	71\%	25\%	91\%
	MS Depend *	4	2	3	1	5	n.a.	126\%	86\%	195\%
	Total	60	72	71	41	109	26\%	28\%	19\%	37\%
ESU Total		255	288	413	229	522	14\%	13\%	11\%	15\%

[^3]Table 7. Oregon Coast Coho ESU estimated abundance of adult coho salmon spawning naturally by ESU, stratum, and population for the 2015 run year compared to the previous 25 years.

Geographic scale ESU/Stratum/Population	Coho salmon origin	Spawning year			
		2015	1990 to 2014		
			Avg.	Min.	Max.
Oregon Coast Coho ESU	Wild	57,125	135,000	21,139	359,692
	Hatchery	692	9,793	942	26,128
	\% Hat.	1.2\%	11.2\%	0.7\%	31.4\%
North Coast Stratum	Wild	6,740	21,911	1,524	67,370
	Hatchery	16	2,215	0	15,563
	\% Hat.	0.2\%	20.1\%	0.0\%	79.0\%
Necanicum River	Wild	847	1,460	97	5,727
	Hatchery	0	124	0	501
	\% Hat.	0.0\%	17.1\%	0.0\%	40.1\%
Nehalem River	Wild	3,079	11,231	527	32,517
	Hatchery	0	1,619	0	14,014
	\% Hat.	0.0\%	22.2\%	0.0\%	87.7\%
Tillamook Bay	Wild	1,345	5,231	80	20,090
	Hatchery	16	324	0	1,498
	\% Hat.	1.2\%	18.1\%	0.0\%	68.9\%
Nestucca River	Wild	1,029	2,795	160	16,698
	Hatchery	0	54	0	274
	\% Hat.	0.0\%	6.3\%	0.0\%	15.3\%
North Coast Dependents	Wild	440	634	0	4,607
	Hatchery	0	20	0	111
	\% Hat.	0.0\%	1.0\%	0.0\%	6.3\%
Mid-Coast Stratum	Wild	22,673	37,696	2,444	121,963
	Hatchery	33	2,186	0	9,633
	\% Hat.	0.1\%	14.4\%	0.0\%	50.1\%
Salmon River	Wild	332	601	5	3,680
	Hatchery	19	638	0	2,621
	\% Hat.	5.4\%	63.0\%	0.0\%	97.6\%
Siletz River	Wild	2,216	6,524	207	33,094
	Hatchery	0	272	0	962
	\% Hat.	0.0\%	17.5\%	0.0\%	58.4\%
Yaquina River	Wild	2,400	6,343	317	25,582
	Hatchery	0	180	0	1,526
	\% Hat.	0.0\%	7.6\%	0.0\%	25.0\%
Beaver Creek	Wild	332	1,833	90	6,564
	Hatchery	0	51	0	405
	\% Hat.	0.0\%	3.9\%	0.0\%	23.8\%
Alsea River	Wild	6,185	6,850	108	28,337
	Hatchery	0	336	0	2,214
	\% Hat.	0.0\%	16.9\%	0.0\%	93.8\%
Siuslaw River	Wild	10,352	13,400	501	55,445
	Hatchery	0	613	0	4,136
	\% Hat.	0.0\%	11.2\%	0.0\%	37.6\%
Mid Coast	Wild	856	1,567	51	8,179
Dependents	Hatchery	14	32	0	118
	\% Hat.	1.6\%	1.7\%	0.0\%	5.9\%

Table 7. Continued

Geographic scale ESU/Stratum/Population	Coho salmon origin	Spawning year			
		2015	1990 to 2014		
			Avg.	Min.	Max.
Lakes Stratum	Wild	4,729	15,096	1,973	38,744
	Hatchery	0	56	0	251
	\% Hat.	0.0\%	0.5\%	0.0\%	2.2\%
Siltcoos Lake	Wild	1,558	4,092	385	7,998
	Hatchery	0	25	0	124
	\% Hat.	0.0\%	1.0\%	0.0\%	8.7\%
Tahkenitch Lake	Wild	1,085	2,934	317	10,681
	Hatchery	0	13	0	107
	\% Hat.	0.0\%	0.5\%	0.0\%	3.1\%
Tenmile Lake	Wild	2,086	7,670	1,271	20,385
	Hatchery	0	16	0	123
	\% Hat.	0.0\%	0.3\%	0.0\%	3.4\%
Umpqua Stratum	Wild	14,843	28,674	3,334	94,655
	Hatchery	643	4,841	434	17,758
	\% Hat.	4.2\%	19.1\%	1.1\%	36.0\%
Lower Umpqua River	Wild	3,725	9,762	1,257	36,942
	Hatchery	0	269	0	1,484
	\% Hat.	0.0\%	3.4\%	0.0\%	15.7\%
Middle Umpqua River	Wild	2,245	6,321	563	19,962
	Hatchery	0	225	0	1,259
	\% Hat.	0.0\%	4.7\%	0.0\%	20.6\%
North Umpqua River	Wild	2,995	2,687	355	9,397
	Hatchery	188	3,311	45	14,094
	\% Hat.	5.9\%	52.7\%	1.1\%	84.3\%
South Umpqua River	Wild	5,878	9,372	435	49,958
	Hatchery	455	875	0	7,040
	\% Hat.	7.2\%	12.9\%	0.0\%	57.2\%
Mid-South Coast Stratum	Wild	8,140	31,624	4,890	82,077
	Hatchery	0	495	1	2,766
	\% Hat.	0.0\%	2.4\%	0.0\%	23.8\%
Coos River	Wild	3,030	14,271	1,112	38,880
	Hatchery	0	213	0	1,387
	\% Hat.	0.0\%	2.5\%	0.0\%	36.4\%
Coquille River	Wild	3,357	13,923	2,033	55,667
	Hatchery	0	185	0	1,832
	\% Hat.	0.0\%	2.0\%	0.0\%	15.4\%
Floras Creek	Wild	1,585	2,723	340	11,329
	Hatchery	0	69	0	400
	\% Hat.	0.0\%	4.4\%	0.0\%	22.8\%
Sixes River	Wild	168	186	34	567
	Hatchery	0	18	0	182
	\% Hat.	0.0\%	9.2\%	0.0\%	65.7\%
Mid-South Coast Dependents	Wild	0	120	0	484
	Hatchery	0	2	0	9
	\% Hat.	0.9\%	1.5\%	0.0\%	4.6\%

* = Unusually low numbers of surveys meeting the standard inclusion criteria resulted in an inadequate sample for calculating abundance
estimates. An alternative method was used including all surveys actually sampled, comprising both peak counts and AUC calculations.

Figure 6. Oregon Coast Coho ESU estimated abundance of adult coho salmon spawning naturally by rearing origin for the 1990 through 2015 run years.

Wild coho salmon spawner abundance decreased substantially between 2014 and 2015, from the highest to the eighth lowest observed during 26 years of monitoring (Appendix Table B-4). However, the distribution of spawners between populations in each of these two years was fairly similar. In both years, five populations were the minimum number needed to reach 50% of the ESU total abundance, and in both years the top five accounted for 52% of the total ESU abundance. This is very similar to the prior five year average (2011 through 2015) where the top five abundance populations accounted 53% of the OC Coho ESU wild abundance. In 2015, the Siuslaw had the highest wild coho salmon abundance, accounting for 19% of the ESU total, and in 2014 the Coquille had the highest abundance at 12% of the ESU total abundance. In 2015, the five highest wild abundance populations were in three of the five strata; Mid Coast, Umpqua and Mid-South Coast. This pattern is consistent with the last five years where the North Coast and Lakes strata have each only had a single year with a population in the top five for wild coho salmon abundance. Another way to track the distribution of wild coho salmon spawners is in the number of populations with over 20,000 wild adult coho salmon spawners. The lowest total wild coho salmon spawning abundance in the OC Coho ESU observed during the 26 years of this monitoring was 21,139 in 1990. In 2015, there were no populations with over 20,000 wild adult coho salmon spawners, and the highest observed abundance was 10,352 in the Siuslaw population. In contrast, there were over 20,000 wild coho in 8 of 24 populations in 2014.

The Oregon Coast Coho Conservation Plan (OCCCP) established six measureable criteria for the assessment of conservation status of the 21 independent populations in the OC Coho ESU (ODFW 2007). Metrics for two of the criteria are based on wild adult coho salmon spawner abundance. Although the OCCCP assesses the criteria over a multi-year time-frame, the annual abundance estimates can be compared to the threshold value for each metric. Criterion 1 (Adult Abundance) establishes escapement goals for each population based on the annual marine survival category (ODFW 2007, Appendix 2 Table 2). The marine survival category for 2015 was "Medium" (PFMC 2015) and none of the 21 independent populations met the OCCCP escapement goal. Criterion 5 (Diversity) is based on maintaining at least 97.5% of a population's heterozygosity over a 100 year period. The threshold value for the metric is a harmonic mean of at least 1,200 wild adult coho salmon spawners over a modeled 100 year population abundance projection. Although the 2015 estimated abundances are not a direct evaluation of the OCCCP Criterion 5 metric, 15 of the 21 independent populations exceeded the threshold value (Table 7).

Abundance of hatchery adult coho salmon in 2015 on natural spawning grounds in the OC Coho ESU was the lowest recorded in 26 years of monitoring (Table 7). Abundance of hatchery fish in 2015 was less than the long-term average for all 30 spatial scales sampled (ESU, 5 strata and the 24 populations) and set or tied the record low at 22 spatial scales (Table 7). During 2015, only 2 of the 24 OC Coho ESU populations had an estimated abundance of greater than 100 hatchery coho salmon on natural spawning grounds (Table 7). The low abundance of coho in 2015 resulted in small samples sizes for determining rearing origin. Only 185 coho salmon carcasses were recovered in the OC Coho ESU in 2015 and thus observations of Ad Clip status from live fish was used in 14 of 24 population (Appendix Table D-4).

Distribution and Timing

In $2015,61 \%$ of the 288 sites surveyed in the OC Coho ESU were occupied by adult coho salmon (Table 8). Occupancy in 2015 was lower than the 5 year average rate for the OC Coho ESU overall, 4 of 4 sampled strata, and 17 of 21 sampled populations. The proportion of surveys in 2015 that were occupied and contained wild fish ranged from 0% for the Mid-South Coast dependent populations to 94% in the Alsea population (Table 8). Occupancy rates are typically lowest in the Umpqua stratum and highest in the Lakes stratum (Table 8). Monitoring of the North Umpqua population is based on the Winchester Dam count plus GRTS surveys in Sutherlin Creek (below the dam). While the North Umpqua occupancy rate was 0% in 2015, it is calculated from the GRTS surveys in Sutherlin Creek and thus doesn't represent the entire population. There were no GRTS surveys conducted in the Lakes stratum in 2015 and therefore occupancy rates couldn't be calculated for these population $\sin 2015$.

Adult coho salmon density in 2015 was relatively low across the OC Coho ESU (Figure 7). Coho salmon density was calculated as the AUC estimate divided by the miles surveyed for GRTS sites. There were 21 populations with GRTS sites in 2015 , and 11 populations had densities of less than 10 coho salmon per mile, including five populations at less than 5 coho salmon per mile (Figure 7; Appendix Table D-4). The highest density in 2015 was observed in the Alsea River population at 23.1 adult coho salmon per mile (Figure 7; Appendix Table D-4). The 2015 density results are a sharp contrast to 2014 when there were eight populations with coho salmon densities over 100 fish per mile.

Table 8. Oregon Coast Coho ESU adult coho salmon occupancy (total \& wild) by population, stratum, and ESU; 2015 run year and previous 5 year average (2010-14). Occupancy $=$ a peak of 4 or more adult coho salmon per mile. Wild Occupied $=$ occupied sites with at least one wild coho salmon.

ESU, Stratum, and TRT Population	2015 No. sites surveyed	5 yr . avg. No. sites surveyed	Total coho salmon		Wild coho salmon	
			2015 \% Occupied	$\begin{gathered} 5 \mathrm{yr} . \\ \text { avg. \% } \\ \text { Occupied } \\ \hline \end{gathered}$	2015 \% Occupied	$\begin{gathered} 5 \mathrm{yr} . \\ \text { avg. \% } \\ \text { Occupied } \\ \hline \end{gathered}$
Oregon Coast ESU	288	413	61.1\%	75.4\%	58.0\%	72.0\%
North Coast Stratum	73	103	57.5\%	70.1\%	53.4\%	64.5\%
Necanicum River	18	16	83.3\%	77.0\%	83.3\%	74.9\%
Nehalem River	15	26	60.0\%	70.0\%	60.0\%	66.9\%
Tillamook Bay *	22	23	36.4\%	76.2\%	31.8\%	65.8\%
Nestucca River	12	21	58.3\%	69.8\%	50.0\%	63.1\%
NC Dependents	6	17	50.0\%	53.7\%	33.3\%	49.7\%
Mid-Coast Stratum	88	128	76.1\%	84.8\%	71.6\%	82.2\%
Salmon River	9	13	55.6\%	71.3\%	44.4\%	65.5\%
Siletz River	18	22	77.8\%	92.0\%	77.8\%	91.1\%
Yaquina River	19	21	68.4\%	90.2\%	63.2\%	88.6\%
Beaver Creek	3	7	100.0\%	100.0\%	66.7\%	100.0\%
Alsea River	18	26	94.4\%	94.6\%	94.4\%	92.5\%
Siuslaw River	14	23	85.7\%	83.6\%	85.7\%	80.3\%
MC Dependents	7	16	42.9\%	55.1\%	28.6\%	50.6\%
Lakes Stratum	0	29	n.a.	85.4\%	n.a.	84.1\%
Siltcoos Lake	0	13	n.a.	79.3\%	n.a.	79.3\%
Tahkenitch Lake	0	4	n.a.	96.4\%	n.a.	96.4\%
Tenmile Lake	0	12	n.a.	88.4\%	n.a.	85.2\%
Umpqua Stratum	55	81	45.5\%	66.2\%	41.8\%	62.6\%
Lower Umpqua River	18	25	61.1\%	79.2\%	55.6\%	75.3\%
Mid. Umpqua River	15	20	26.7\%	64.5\%	26.7\%	61.4\%
North Umpqua River	3	11	0.0\%	57.2\%	0.0\%	52.5\%
South Umpqua River	19	25	52.6\%	65.1\%	47.4\%	62.9\%
Mid-South Stratum	72	71	58.3\%	73.6\%	58.3\%	70.8\%
Coos River *	21	27	66.7\%	80.3\%	66.7\%	76.1\%
Coquille River*	24	24	75.0\%	76.0\%	75.0\%	74.6\%
Floras Creek *	22	9	40.9\%	92.2\%	40.9\%	90.0\%
Sixes River	3	9	33.3\%	31.7\%	33.3\%	27.7\%
MSC Dependents *	2	3	0.0\%	18.7\%	0.0\%	18.7\%

[^4] estimates. An alternative method was used including all surveys actually sampled, comprising both peak counts and AUC calculations.

Due to sample size issues in 2015, coho salmon distribution within a population was evaluated for only 14 of the 24 populations (Table 9). In 2015, the Alsea River population had the most even, and the Floras Creek and Middle Umpqua populations had the patchiest spatial distribution (Table 9). The percent of GRTS sites in a population with live coho salmon observed (AUC >0) averaged 78%, and ranged from 47% in the Middle Umpqua population to 100% in the Alsea River population (Table 9). These values are higher than the percent occupied metric (Table 8) which requires at least four coho salmon observed on a single survey date, not just a single coho salmon observed on any survey date for the season.

Table 9. Distribution metrics for Oregon Coast Coho ESU populations, 2015 run year. Total fish metrics were calculated for populations with at least 10 sites, hatchery and wild metrics were calculated for populations with adequate site specific pHOS data. Populations with uniform distribution would have $\mathrm{AOC}=0.5, \mathrm{P}_{80 \%}=0.8$, and $\%$ sites with fish $=100 \%$.

Oregon Coast populations	\# of Sites	Total coho salmon			Wild coho salmon			Hatchery coho salmon		
		AOC	$\mathrm{P}_{80 \%}$	$\%$ sites with fish	AOC	$\mathrm{P}_{80 \%}$	\% sites with fish	AOC	$\mathrm{P}_{80 \%}$	\% sites with fish
Necanicum River	18	0.29	0.52	89\%	0.29	0.52	89\%	NHF	NHF	NHF
Nehalem River	15	0.23	0.41	73\%	--	--	--	--	--	--
Tillamook Bay *	22	0.18	0.34	82\%	--	--	--	--	--	--
Nestucca River	12	0.28	0.50	92\%	--	--	--	--	--	--
NC Dependent	6	--	--	--	--	--	--	--	--	--
Salmon River	9	--	--	--	--	--	--	--	--	--
Siletz River	18	0.24	0.42	78\%	0.24	0.42	78\%	NHF	NHF	NHF
Yaquina River	19	0.21	0.36	74\%	--	--	--	--	--	--
Beaver Creek	3	--	--	--	--	--	--	--	--	--
Alsea River	18	0.32	0.55	100\%	0.32	0.55	100\%	NHF	NHF	NHF
Siuslaw River	14	0.30	0.49	93\%	0.30	0.49	93\%	NHF	NHF	NHF
MC Dependent	7	--	--	--	--	--	--	--	--	--
Siltcoos Lake	0	--	--	--	--	--	--	--	--	--
Tahkenitch Lake	0	--	--	--	--	--	--	--	--	--
Tenmile Lake	0	--	--	--	--	--	--	--	--	--
Lower Umpqua R.	18	0.19	0.32	67\%	--	--	--	--	--	--
Middle Umpqua R.	15	0.12	0.19	47\%	--	--	--	--	--	--
North Umpqua R.	3	--	--	--	--	--	--	--	--	--
South Umpqua R.	19	0.15	0.28	53\%	--	--	--	--	--	--
Coos River *	21	0.21	0.41	90\%	--	--	--	--	--	--
Coquille River*	24	0.26	0.47	88\%	0.26	0.47	88\%	0.05	0.09	17\%
Floras Creek *	22	0.11	0.19	64\%	--	--	--	--	--	--
Sixes River	3	--	--	--	--	--	--	--	--	--
MSC Dependent *	2	--	--	--	--	--	--	--	--	--

* = Unusually low numbers of surveys meeting the standard inclusion criteria resulted in an inadequate sample for calculating these metrics. Therefore, used all the used for abundance calculations.
-- = Too few sites and/or too few samples for determining rearing origin to calculate metrics.
NHF = No hatchery fish detected, therefore, no distribution metrics for hatchery fish.

Figure 7. Coho salmon density (AUC/mile) in GRTS surveys by Oregon Coast TRT population, 2015. Functionally independent and potentially independent populations are labeled. For further detail see Appendix Table D-4.

Figure 8. Percentage of marked adult coho salmon in GRTS surveys by Oregon Coast TRT population, 2015. Functionally independent and potentially independent populations are labeled. For further detail see Appendix Table D-4.

Inadequate samples for determining pHOS at spatial scales smaller than the TRT population limited the analysis of distribution by rearing origin. Only five populations met the criteria for calculating distribution by rearing origin (at least 50\% GRTS site and at least 90\% finer than population scale pHOS values). In the Coquille River population, 3 of 24 sites accounted for 93% of hatchery coho salmon in 2015, whereas, it required 16 of 24 sites to account for 93% of the wild coho salmon spawners (Figure 9).

Figure 9. Cumulative frequency distribution of coho salmon in the Coquille River population, 2015 run year.

Peak run timing of coho salmon spawners typically occurs in mid to late December in the OC Coho ESU. Run timing in 2015 was earlier than average with a peak in early December (Figure 10). The above average stream flow through most of December likely impacted the ability to count fish and may have contributed to under representing the number of coho salmon actually present from December $6^{\text {th }}$ thorough the $26^{\text {th }}$. If so, this could have contributed to the apparently earlier timing and may have resulted in an under estimate of the coho salmon abundance. On average, about 90% of the live coho salmon seen on OC Coho ESU spawning surveys are seen between mid-November and late January (Figure 10). This is both a longer period and later in the season than for the LCR Coho ESU, where 90% were seen from midOctober to early December (Figure 5).

Proportion Hatchery Fish

The OC Coho ESU naturally spawning coho salmon abundance averaged 11.2% hatchery coho salmon and ranged from 0.7% to 31.4% for the 1990 through 2014 run years (Table 7). In 2015 the proportion of hatchery fish on OC Coho ESU natural spawning grounds was 1.2%, and all five strata and all 24 populations met the Native Fish Conservation Policy (OAR 635-0070502) interim criteria of at least 90% naturally produced spawners (Table 7 and Figure 8). A total of 297,942 hatchery coho salmon smolts were released in the OC Coho ESU in 2014 (adult returns in 2015). The releases occurred in only 4 of the 24 populations (Nehalem, Tillamook, Mid-Coast Dependent and South Umpqua) and represent about six percent of the 5 million hatchery coho salmon smolts released annually in the OC Coho ESU in the early 1990's (Lewis 2000). In 2015, the four OC Coho ESU populations with hatchery coho salmon smolt releases in 2014 had pHOS rates ranging from 0% in the Nehalem to 7.2% in the South Umpqua (Table 7). The reduction in Oregon coastal hatchery coho salmon releases has reduced the number of hatchery coho salmon adults spawning naturally and thus pHOS rate, within the ESU. Only two populations without hatchery coho salmon smolt releases in 2014 had 2015 pHOS rates greater than 2.0%, and both are near populations with hatchery releases. The North Umpqua had a 5.9% pHOS and the Salmon River a 5.4% pHOS rate in 2015 (Table 7).

Figure 10. Run timing of live adult coho salmon in 2015 on GRTS spawning ground surveys in the Oregon Coast Coho ESU.

Southern Oregon/Northern California Coasts Evolutionarily Significant Unit

The Southern Oregon/Northern California Coasts Coho ESU includes coho salmon populations in Oregon and California. Naturally produced coho salmon in the SONCC Coho ESU were listed as "threatened" in 1997 under the federal ESA (NMFS 1997). This report covers spawning escapement monitoring of the Oregon populations in the SONCC Coho ESU, for the 2015 spawning season. The TRT for the SONCC Coho ESU reviewed the historical coho salmon population structure of this ESU and identified seven functionally or potentially independent and nine dependent or ephemeral Oregon coho salmon populations (Figure 1). Geographically, these Oregon populations occupy the northern third of the ESU and, based on an assessment of stream habitat intrinsic potential, represent a similar proportion of the historic coho salmon habitat potential for the ESU (Williams et.al. 2006).

Table 10. Southern Oregon/Northern California Coast Coho ESU, GRTS spawning survey goals, responses, and estimate precision by population, 2015 run year. Target response sites are reaches within coho salmon spawning habitat which were successfully surveyed.

Stratum	Population	Goal	Target response				95\% CI as percent of point estimate (goal is $+/-30 \%$)			
			2015 ${ }^{\text {a }}$	2006 to 2008 ${ }^{\text {a }}$			2015 ${ }^{\text {a }}$	2006 to 2008 ${ }^{\text {a }}$		
				Avg.	Min.	Max.		Avg.	Min.	Max.
Coastal	Elk	18	--	1	0	1	--	n.a.	n.a.	n.a.
	L. Rogue	15	--	2	0	4	--	189\%	189\%	189\%
	Chetco ${ }^{\text {b }}$	26	--	--	--	--	--	--	--	--
	Winchuck ${ }^{\text {b }}$	11	--	--	--	--	--	--	--	--
	SC Depend. ${ }^{\text {b }}$	15	--	--	--	--	--	--	--	--
	Total	85		3	0	5	--	n.a.	n.a.	n.a.
Interior	Illinois	30	--	3	3	4	--	113\%	61\%	172\%
	M. Rogue \& Applegate	30	--	12	8	16	--	72\%	25\%	127\%
	U. Rogue	30	--	9	5	14	--	127\%	56\%	163\%
	Total	90	--	24	22	25	--	n.a.	n.a.	n.a.
ESU Total		175	--	27	24	30	--	71\%	31\%	116\%

n.a. $=$ Not available.
$a=$ No random (GRTS) surveys were conducted in the SONCC Coho ESU for run years 2009 through 2015.
$b=$ The 98 and 07 GRTS sampling frames did not include any coho salmon spawning habitat in these populations.

Effort
Three methods have been used to monitor the abundance of adult coho salmon returning to fresh water in the Oregon portion of the SONCC Coho ESU. First, Gold Ray Dam was located at about river mile 126 on the Rogue River and was a complete barrier to adult salmonid migration, except through the fish ladder counting station. Gold Ray Dam was removed in 2010 and is no longer a source of monitoring data for salmon runs. Counts of adult and jack coho
salmon migrating past Gold Ray Dam are not included in this report, but are available on a web page (http://www.dfw.state.or.us/fish/local_fisheries/rogue_river/goldray/index.asp). Gold Ray Dam counts include coho salmon migrating to natural spawning grounds and coho salmon returning to Cole M. Rivers Hatchery. The hatchery is located near the base of Lost Creek Dam (\sim river mile 157 on the Rogue River) and historically released 150,000 to 200,000 coho salmon smolts annually into the Rogue River adjacent to the hatchery. Since 2015 (2013 brood year) the hatchery smolt release has been reduced to less than 100,000 annually in the Rogue River.

Table 11. Southern Oregon/Northern California Coasts Coho ESU estimated abundance of adult coho salmon spawning naturally in the 2015 run year compared to the previous 21 years. Rogue River Populations only.

Data component	Coho salmon origin	Spawning year			
		2015	1994 to 2014		
			Avg.	Min.	Max.
SONCC Coho ESU (Rogue Only)	Wild	4,072	6,361	394	24,231
	Hatchery	199	428	0	1,230
	\% Hat.	4.7\%	6.0\%	0.0\%	19.2\%
Huntley Park Est. ${ }^{1}$	Total	5,692	11,879	572	33,601
	Wild	4,072	6,477	414	24,509
	Hatchery	1,620	5,403	158	14,013
Freshwater Catch ${ }^{2}$ Excluding Rogue Bay	Total	NA	326	67	862
	Wild	0	0	0	0
	Hatchery	NA	326	67	862
Cole Rivers Hatchery ${ }^{3}$	Total	1,421	4,769	147	12,298
	Wild	0	115	0	370
	Hatchery	1,421	4,653	127	11,937

1 = Huntley Park mark-recapture estimate of coho salmon freshwater escapement to the Rogue Basin above Huntley Park (~ River Mile 8). This includes returns to Cole Rivers Hatchery, natural spawning grounds, freshwater harvest and mortality between Huntley and upriver areas. 2 = Estimated freshwater harvest of coho salmon in the Rouge basin (excluding the Rogue River Bay), based on Angler Harvest Cards (see: http://www.dfw.state.or.us/resources/fishing/sportcatch.asp). Selective harvest of only marked coho salmon since 2004.
$3=$ Number of adult coho salmon collected and retained at Cole Rivers Hatchery. These numbers do not include coho salmon collected and released alive back into the wild.
$N A=$ Data not available at time of print

Second, GRTS based coho salmon spawning ground surveys were conducted in the SONCC Coho ESU from 1998 to 2008. This effort used the 98 Frame (Table 1) which only samples coho salmon spawning habitat in the high and moderate spawner density categories. This accounts for only 29% of the coho salmon spawning habitat in Oregon populations of the SONCC Coho ESU and does not include any coho salmon spawning habitat in the Chetco River, Winchuck River, and dependent populations of the ESU (Figure 11). The sampling frame also only accounts for a small portion of the coho salmon spawning habitat in the Elk River (20\%) and in the four Rogue River coho salmon populations (32%). Finally, there are large portions of the Illinois River and the Middle Rogue and Applegate River coho salmon populations that are within the Rogue River Gorge or the Kalmiopsis Wilderness. These areas are too remote to efficiently be able to conduct spawning ground surveys on a weekly basis. Therefore, they are
excluded from the spawning survey sampling frame. Due to budget constraints no GRTS surveys were conducted in the SONCC Coho ESU in 2005, and 2009 through 2015 (Table 10).

Figure 11. Distribution of coho salmon spawning habitat and the portion included in the current GRTS sampling frame for Oregon populations in the Southern Oregon/Northern California Coasts Coho ESU.

The final escapement monitoring method for the SONCC Coho ESU is a mark-recapture estimate of coho salmon entering the Rogue River. Returning adult coho salmon are sampled by seining at Huntley Park (river mile 8). The seining represents the re-capture, and provides the total coho salmon sampled (C) and number of Ad Clip coho salmon re-captured (R) for the markrecapture equation. Adult coho salmon returning to Cole Rivers Hatchery are enumerated and also sampled for Ad Clip fish. The number of Ad Clip coho salmon collected at Cole Rivers Hatchery is expanded by a constant (1.1) to account for catch and straying of coho salmon between Huntley Park (river mile 8) and the hatchery (river mile 157). Fin-mark rates and the proportion of hatchery coho salmon at Cole Rivers Hatchery that were fin-marked are used to estimate the hatchery and wild components of the coho salmon run (Jacobs et.al. 2002). These estimates of the number of coho salmon returning to the Rogue River above Huntley Park are
then converted to estimates of the number of coho salmon spawning naturally in the Rogue. The number of hatchery and wild coho salmon retained at Cole Rivers Hatchery, and the number harvested in Rogue Basin fisheries (excluding catch in the bay) are subtracted from the Huntley Park estimate to produce an estimate of the abundance of coho salmon on natural spawning grounds in the Rogue Basin (Table 11). Cole Rivers Hatchery data is obtained from the ODFW Hatchery Management Information System. Estimates of freshwater harvest are based on return of angler harvest cards. These are generally not available until a year after the hatchery data.

Abundance

Long-term monitoring of coho salmon spawner abundance in Oregon populations of the SONCC Coho ESU is based on the Huntley Park estimates of coho salmon in the Rogue Basin (Figure 12 and Table 11). Adult wild coho salmon abundance in the SONCC Coho ESU generally increased from 1994 to a peak in 2004 and then declined to a very low escapement in 2008 (Figure 12). This is similar to the pattern for the OC Coho ESU, which generally increased from 1994 to a peak in 2002 and then declined to the 2007 run year (Figure 6). Wild adult coho salmon spawner abundance in the SONCC Coho ESU increased steadily since the very low abundance in 2008 through 2013, followed by a sharp drop in 2014 and a slight increase in abundance in 2015 (Figure 12). This recent pattern does not match that in the OC Coho ESU.

Figure 12. Southern Oregon/Northern California Coasts Coho ESU estimated abundance of adult coho salmon spawning naturally by rearing origin for the 1994 through 2015 run years. Abundance based on Huntley seining mark-recapture method.

Distribution and Timing

Huntley Park seining in the Rogue Basin provides long-term abundance data, but not spatial and temporal distribution information for coho salmon spawners. The GRTS spawning survey project can provide this information. However, no GRTS spawning grounds surveys for coho salmon were conducted in the SONCC Coho ESU in 2015. Results for previous years GRTS coho salmon spawning ground surveys in the SONCC Coho ESU are reported in Lewis et.al. (2009).

Proportion Hatchery Fish

Currently, hatchery coho salmon spawning naturally is calculated by starting with the estimated number of hatchery coho salmon passing Huntley Park (river mile 8), and then subtracting hatchery coho salmon collected upriver of Huntley Park (harvest based on angler harvest card data, and returns to Cole Rivers Hatchery). Using this method, hatchery fish accounted for 4.7% of the naturally spawning coho salmon in the Rogue Basin in 2015 (Table 11). However, this is a maximum estimate as it does not account for harvest of hatchery fish, since the harvest card data was not yet available. On average over the previous 10 years, inclusion of the harvest card data has reduced pHOS by half. Although the current 2015 pHOS estimate is a maximum value, it is still below the long-term average of $6.0 \% \mathrm{pHOS}$ for the Rogue River naturally spawning coho salmon population. Since no GRTS spawning ground surveys were conducted in 2015 there is no direct measurement of naturally spawning hatchery coho salmon to compare to this estimate. In years with both estimates of pHOS in the Rogue naturally spawning coho salmon population, the two methods produced comparable results (Lewis et.al. 2009).

ACKNOWLEDGEMENTS

We would like to thank the many field biologists and project staff who prepare for the season and conduct the surveys each year. Without their tireless efforts, hard work, and diligence this report would not be possible. We would also like to thank the ODFW staff who conduct the Huntley Park seining and who count and sample fish at hatcheries, dams, and fish traps for their hard work and dedication that provides such valuable data for this work. In addition to ODFW staff this work is coordinated and conducted in conjunction with staff and volunteers from several Watershed Councils in the Lower Columbia and along the Oregon Coast, as well as, students at Mt Hood Community College. We greatly appreciate their enthusiasm and help in this important work. Finally, we are very grateful to staff at the Oregon State University statistics department and the Corvallis U.S. Environmental Protection Agency for their help with sampling design and statistical analysis.

REFERENCES

Beidler, W.M., and T.E. Nickelson. 1980. An evaluation of the Oregon Department of Fish and Wildlife standard spawning survey system for coho salmon. Oregon Department of Fish and Wildlife, Information Reports (Fish) 80-9, Salem, Oregon.

Diaz-Ramos, S., D. L. Stevens, and A. R. Olsen. 1996. EMAP Statistical Methods Manual. Environmental Monitoring and Assessment Program, Corvallis, Oregon.

Firman, J.C., and S.E. Jacobs. 2001. A survey design for integrated monitoring of salmonids. In Nishida T. and C.E. Hollingworth. Proceedings of First International Symposium on GIS in Fishery Science, Saitama, Japan.

Ganio, L.M., L.D. Calvin, and C.B. Pereira. 1986. Estimating coho salmon escapement in Oregon streams. Final Report of Oregon State University, Department of Statistics, to the Oregon Department of Fish and Wildlife, Salem, Oregon.

Jacobs, S.E., and T.E. Nickelson. 1998. Use of stratified random sampling to estimate the abundance of Oregon coastal coho salmon. Oregon Department of Fish and Wildlife, Final Reports (Fish) Project \# F-145-R-09, Salem, Oregon.

Jacobs, S., J. Firman, G. Susac, D. Stewart, and J. Weybright. 2002. Status of Oregon coastal stocks of anadromous salmonids, 2000-2001 and 2001-2002; Monitoring Program Report Number OPSW-ODFW-2002-3, Oregon Department of Fish and Wildlife, Salem, Oregon.

Lawson, P.W., E.P. Bjorkstedt, M.W. Chilcote, C.W. Huntington, J.S. Mills, K.M.S. Moore, T.E. Nickelson, G.H. Reeves, H.A. Stout, T.C. Wainwright, and L.A. Weitkamp. 2007. Identification of historical populations of Coho salmon (Oncorhynchus kisutch) in the Oregon coast evolutionarily significant unit. U.S. Department of Commerce, NOAA Technical Memorandum, NMFS-NWFSC-79.

Lewis, M.A. 2000. Stock assessment of anadromous salmonids, 1999. Monitoring Program Report Number OPSW-ODFW-2000-4, Oregon Department of Fish and Wildlife, Salem, Oregon.

Lewis, M., E. Brown, B. Sounhein, M. Weeber, E. Suring, and H. Truemper. 2009. Status of Oregon stocks of coho salmon, 2004 through 2008. Monitoring Program Report Number OPSW-ODFW-2009-3, Oregon Department of Fish and Wildlife, Salem, Oregon.

Meyers, J.M., C. Busack, D. Rawding, A.R. Marshall, D.J. Teel, D.M. Van Doornik, and M.T. Maher. 2006. Historical population structure of Pacific salmonids in the Willamette River and lower Columbia River basins. U.S. Department of Commerce, NOAA Technical Memorandum, NMFS-NWFSC-73.

NMFS (National Marine Fisheries Service). 1997. Endangered and Threatened Species; Threatened Status for Southern Oregon/Northern California Coast Evolutionarily Significant Unit (ESU) of Coho Salmon. Federal Register 62(87):24588.

NMFS (National Marine Fisheries Service). 2005. Endangered and Threatened Species: Final Listing Determinations for 16 ESUs of West Coast Salmon, and Final 4(d) Protective Regulations for Threatened Salmonid ESUs. Federal Register 70(123):37160.

NMFS (National Marine Fisheries Service). 2008. Endangered and Threatened Species: Final Threatened Listing Determination, Final Protective Regulations, and Final Designation of Critical Habitat for the Oregon Coast Evolutionarily Significant Unit of Coho Salmon Federal Register 73(28):7816.

ODFW (Oregon Department of Fish and Wildlife). 2007. Oregon Coast Coho Conservation Plan for the State of Oregon. Oregon Department of Fish and Wildlife, Salem, Oregon.

Peacock, S.J. and C.A. Holt. 2012. Metrics and sampling designs for detecting trends in the distribution of spawning Pacific salmon (Oncorhynchus spp.). Canadian Journal of Fisheries and Aquatic Sciences 69: 681-694.

Perrin, C. J., and J. R. Irvine. 1990. A Review of Survey Life Estimates as They Apply to the Area-Under-the-Curve Method for Estimating the Spawning Escapement of Pacific Salmon. Canadian Technical Report of Fisheries and Aquatic Sciences (1733).

PFMC (Pacific Fishery Management Council). 2015. Preseason Report I: Stock Abundance Analysis and Environmental Assessment Part 1 for 2015 Ocean Salmon Fishery Regulations. Pacific Fishery Management Council, Portland, Oregon, Oregon.

Solazzi, M.F. 1984. Relationship between visual counts of coho, Chinook and chum salmon from spawning fish surveys and the actual number of fish present. Oregon Department of Fish and Wildlife, Information Reports (Fish) 84-7, Salem, Oregon.

Stevens, D.L. 2002. Sampling design and statistical analysis methods for integrated biological and physical monitoring of Oregon streams. OPSW-ODFW-2002-07, Oregon Department of Fish and Wildlife, Salem, Oregon.

Wainwright T. C., M. W. Chilcote, P. W. Lawson, T. E. Nickelson, C. W. Huntington, J. S. Mills, K. M. S. Moore, G. H. Reeves, H. Stout, and L. Weitkamp. 2008. Biological Recovery Criteria for the Oregon Coast Coho Salmon Evolutionarily Significant Unit. U.S. Dept. Commerce, NOAA Tech. Memo. NWFS-NWFSC-91.

Walters, C. J., and P. Cahoon. 1985. Evidence of decreasing spatial diversity in British Columbia salmon stocks. Canadian Journal of Fisheries and Aquatic Sciences 42: 1033-1037.

Williams, T.H., E.P. Bjorkstedt, W.G. Duffy, D. Hillemeier, G. Kautsky, T.E. Lisle, M. McCain, M. Rode, R.G. Szerlong, R.S. Schick, M.N. Goslin, and A. Agrawal. 2006. Historical population structure of coho salmon in the Southern Oregon/Northern California Coasts Evolutionarily Significant Unit. U.S. Department of Commerce, NOAA Technical Memorandum NMFS. NOAA-TM-NMFS-SWFSC-390.

APPENDIX A (LCR COHO ESU)

Table A-1. Results of randomly selected spawning ground surveys for coho salmon in the Oregon portion of the LCR Coho ESU, run year 2015. Estimates derived using GRTS protocol. Estimates of wild spawners derived through application of fin-mark observations. Missing values for populations indicate inadequate samples for determining total and/or wild abundance.

| ESU, Stratum, and
 TRT Population | Survey effort
 number of | | | Adult coho salmon spawner abundance | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | Total | | Wild | | | |
| | Surveys | Miles | Estimate | 95% CI | Estimate | 95% CI |
| Lower Columbia River ESU | $\mathbf{9 6}$ | $\mathbf{8 7 . 4}$ | $\mathbf{1 , 7 1 2}$ | $\mathbf{3 8 7}$ | $\mathbf{1 , 3 9 4}$ | $\mathbf{3 2 8}$ |
| Coast Stratum | $\mathbf{3 5}$ | $\mathbf{2 9 . 4}$ | $\mathbf{7 1 4}$ | $\mathbf{2 2 7}$ | $\mathbf{7 0 5}$ | $\mathbf{2 2 4}$ |
| Youngs Bay | 0 | | | | | |
| Big Creek | 0 | | | | | |
| Clatskanie River (ex. Plympton) | 21 | 18.5 | 245 | 86 | 239 | 84 |
| Plympton Cr. (Clatskanie R.) | 1 | 1.0 | 4 | -- | 1 | -- |
| Scappoose River | 13 | 9.9 | 465 | 213 | 465 | 213 |
| Cascade Stratum | $\mathbf{5 5}$ | $\mathbf{5 7 . 4}$ | $\mathbf{9 4 0}$ | $\mathbf{3 0 8}$ | $\mathbf{6 8 9}$ | $\mathbf{2 3 8}$ |
| Clackamas River (ex. Eagle Cr.) | 21 | 20.6 | 245 | 137 | 237 | 132 |
| Eagle Creek (Clackamas R.) | 9 | 10.7 | 294 | 186 | 72 | 45 |
| Sandy River | 25 | 23.3 | 401 | 204 | 380 | 193 |
| Gorge Stratum | $\mathbf{6}$ | $\mathbf{3 . 3}$ | $\mathbf{5 8}$ | $\mathbf{5 1}$ | | |
| Lower Gorge | 3 | 1.4 | 48 | 47 | | |
| Hood River | 3 | 1.9 | 11 | 21 | | |

Table A-2. Number of unmarked adult coho salmon passed upstream of counting stations into areas without GRTS spawning surveys. Oregon portion of the LCR Coho ESU, run year 2015.

		Spawning year			
ESU, Stratum, and		2002 to 2014			
TRT Population	Counting station	2015	Avg.	Min.	Max.

Lower Columbia River ESU

Coast Stratum

Youngs Bay	Klaskanine Hatchery	7	25	2	68
Big Creek	Big Creek Hatchery	88	249	46	606
Scappoose River	Bonnie Falls Trap	22	53	2	136

Cascade Stratum

Clackamas River	N Fk Clackamas Dam	1,475	2,568	835	8,230
Sandy River	Sandy Hatchery $^{\text {a }}$	63	182	36	539
	Marmot Dam	n.a.	809	310	1,173

Gorge Stratum
Hood River

Powerdale Dam	n.a.	52

27	126

[^5]Table A-3. Annual abundance estimates of naturally spawning wild adult coho salmon in the Oregon portion of the LCR Coho ESU, run years 2002 through 2015. n.a. $=$ not available.

Return Year	Youngs Bay	Big Creek	Clatskanie*	Scappoose	Clackamas	Sandy	Lower Gorge	Hood River
2002	411	98	104	502	1,981	382	338	147
2003	113	435	563	336	2,507	1,348	n.a.	41
2004	149	112	398	755	2,874	1,213	n.a.	126
2005	79	219	494	348	1,301	856	263	1,262
2006	74	225	421	719	3,464	923	226	373
2007	21	212	583	375	3,608	687	126	170
2008	82	360	995	292	1,694	1,277	223	69
2009	26	792	1,070	778	7,982	1,493	468	65
2010	68	279	1,609	1,960	1,757	901	920	223
2011	161	160	1,506	298	2,254	3,494	216	232
2012	129	409	619	210	1,580	1,165	96	169
2013	n.a.	n.a.	443	979	3,202	667	151	561
2014	n.a.	n.a.	3,126	1,587	10,670	5,942	362	42
2015	n.a.	n.a.	224	487	1,784	443	30	4

[^6]
APPENDIX B (OC COHO ESU)

Table B-1. Results of randomly selected spawning ground surveys for coho salmon in the OC Coho ESU, run year 2015. Estimates derived using GRTS protocol. Estimates of wild spawners derived through application of fin-mark observations. Missing values for populations indicate inadequate samples for determining total and/or wild abundance.

ESU, Stratum, and TRT Population	Survey effort number of		Adult coho salmon spawner abundance			
			Total		Wild	
	Surveys	Miles	Estimate	95\% CI	Estimate	95\% CI
Oregon Coast ESU	288	214.2	49,884	7,000	48,355	6,765
North Coast Stratum	73	53.3	6,756	1,714	6,740	1,710
Necanicum River	18	12.0	847	202	847	202
Nehalem River	15	11.4	3,079	1,378	3,079	1,378
Tillamook Bay	22 *	17.2	1,361	768	1,345	759
Nestucca River	12	9.3	1,029	446	1,029	446
NC Dependents	6	3.5	440	458	440	458
Mid-Coast Stratum	88	61.0	22,685	3,636	21,795	3,595
Salmon River	9	6.3	351	198	332	187
Siletz River	18	12.3	2,216	824	2,216	824
Yaquina River	19	10.5	2,400	1,099	2,400	1,099
Beaver Creek	3	1.7	332	79	332	79
Alsea River	18	13.7	6,162	1,632	6,162	1,632
Siuslaw River	14	9.7	10,352	2,887	10,352	2,887
MC Dependents	7	6.8	870	538		
Umpqua Stratum	55	39.7	12,303	5,339	11,848	5,058
Lower Umpqua River	18	11.7	3,725	2,068	3,725	2,068
Middle Umpqua River	15	12.2	2,245	1,773	2,245	1,773
North Umpqua River	3	2.1	0	0		
South Umpqua River	19	13.8	6,333	4,592	5,878	4,262
Mid-South Coast Stratum	72	60.2	8,140	2,083	7,972	2,082
Coos River	21 *	18.7	3,030	1,555	3,030	1,555
Coquille River	24 *	17.8	3,357	1,097	3,357	1,097
Floras Creek	22 *	20.8	1,585	842	1,585	842
Sixes River	3	1.6	168	67		
MSC Dependents	2 *	1.2	0	0		

* = Unusually low numbers of surveys meeting the standard inclusion criteria resulted in an inadequate sample for calculating abundance estimates. An alternative method was used including all surveys actually sampled, comprising both peak counts and AUC calculations.

Table B-2. Comparison of 2015 run year wild adult coho salmon spawners in the Oregon Coastal Lakes populations based on GRTS surveys and calibrated standard surveys.

ESU, Stratum, \& TRT Population	Survey goal	Survey effort number of		Adult coho salmon spawner abundance			
				Total		Wild	
		Surveys	Miles	Estimate	95\% CI	Estimate	95\% CI
GRTS Surveys							
Lakes Strata	--	--	--	--	--	--	--
Siltcoos	--	--	--	--	--	--	--
Tahkenitch	--	--	--	--	--	--	--
Tenmile	--	--	--	--	--	--	--
Standard Surveys							
Lakes Strata	14	8	6.6	4,729		4,729	
Siltcoos	5	2	2.5	1,558		1,558	
Tahkenitch	2	2	1.6	1,085		1,085	
Tenmile	7	4	2.5	2,086		2,086	

Table B-3. Estimates of adult coho salmon run size in the North Umpqua River derived through adjustment of Winchester Dam count. Dam count adjusted for adult coho salmon retained by hatchery operations and harvest above Winchester Dam, 2015 compared to the previous 5 years.

Data component		Spawning year			
		2015	2010 to 2014		
			Avg.	Min.	Max.
North Umpqua Coho salmon	Wild	2,995	5,061	2,774	9,397
	Hatchery	188	416	45	638
	\% Hat.	5.9\%	9.0\%	1.1\%	18.2\%
GRTS Estimate below Winchester Dam ${ }^{1}$	Total	0	119	21	298
	Wild	0	119	21	298
	Hatchery	0	0	0	0
Winchester Dam ${ }^{2}$	Total	3,193	5,462	3,359	10,127
	Wild	2,995	5,016	2,737	9,462
	Hatchery	198	446	105	669
Freshwater Catch ${ }^{3}$ Above Winchester Dam	Total	n.a.	29	4	60
	Wild	n.a.	0	0	0
	Hatchery	n.a.	29	4	60
Rock Creek Hatchery ${ }^{4}$	Total	10	27	0	68
	Wild	0	26	0	65
	Hatchery	10	1	0	3

[^7]Table B-4. Annual abundance estimates of naturally spawning wild adult coho salmon in the Oregon Coast Coho ESU, run years 1990 through 2015. n.a. = not available. Numbers in italics are partial estimates of spawners in dependent populations.

Stratum and Population	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
North Coast											
Necanicum River	126	752	133	512	269	181	416	97	575	351	359
Nehalem River	1,158	6,837	1,392	3,049	2,844	1,700	527	1,187	1,206	3,555	14,462
Tillamook Bay	80	1,577	176	571	1,105	341	733	437	358	1,831	2,178
Nestucca River	160	618	604	340	266	1,537	440	230	202	2,357	1,219
NC Dependents	0	444	24	41	77	108	275	61	0	47	0
Mid-Coast											
Salmon River	19	5	11	13	91	105	82	16	86	14	179
Siletz River	228	410	2,386	207	621	314	395	298	316	1,209	3,387
Yaquina River	318	317	528	458	2,040	4,723	4,578	419	510	2,563	637
Beaver Creek	90	484	618	275	675	308	1,296	497	401	1,511	1,464
Alsea River	775	1,011	6,273	694	828	441	1,060	601	108	1,341	3,363
Siuslaw River	2,269	2,808	3,554	4,600	3,159	6,161	7,234	501	1,020	2,980	6,532
MC Dependents	487	51	1,037	467	317	348	1,364	112	173	150	91
Umpqua											
Lower Umpqua River	1,678	3,123	1,797	7,877	2,762	10,854	7,985	1,257	4,552	2,623	5,781
Middle Umpqua River	1,222	4,546	5,275	2,947	2,162	3,250	5,086	563	1,257	1,748	4,555
North Umpqua River	355	1,301	1,579	906	899	1,293	1,069	577	765	1,194	1,677
South Umpqua River	2,934	2,233	435	3,723	1,081	4,715	7,040	937	3,177	3,011	2,581
Lakes											
Siltcoos	1,578	2,868	385	3,569	1,302	4,415	4,707	2,653	3,122	2,756	3,835
Tahkenitch	1,085	1,215	317	954	1,056	1,577	1,627	1,842	2,817	3,664	634
Tenmile	1,687	3,033	1,271	5,544	3,354	5,092	7,092	4,092	5,169	6,123	8,278
Mid-South Coast											
Coos River	2,243	2,426	16,722	14,932	14,500	10,302	12,128	1,112	2,985	4,818	4,704
Coquille River	2,589	4,782	2,033	7,291	5,119	2,034	15,814	5,720	2,412	2,667	6,253
Floras Creek	n.a	n.a	n.a.	n.a.	2,653	1,351	1,519	482	879	670	1,477
Sixes River	58	35	92	253	238	77	194	143	558	56	136
MSC Dependents	n.a.										

Table B-4. Continued.

Stratum and Population	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
North Coast											
Necanicum River	4,832	2,047	2,377	2,198	1,218	750	431	1,055	3,827	4,445	2,120
Nehalem River	21,928	17,164	32,517	18,736	10,451	11,614	14,033	17,205	21,753	32,215	15,322
Tillamook Bay	1,944	13,334	13,008	2,532	1,995	8,774	2,295	4,828	16,251	14,890	19,250
Nestucca River	4,164	16,698	10,194	4,695	686	1,876	394	1,844	4,252	1,947	7,857
NC Dependents	71	16	0	661	2,116	1,121	376	639	2,052	1,473	1,341
Mid-Coast											
Salmon River	225	543	42	1,642	79	513	59	652	753	1,382	3,636
Siletz River	1,595	2,129	8,038	8,179	14,567	5,205	2,197	20,634	24,070	6,283	33,094
Yaquina River	3,589	23,800	16,484	5,539	3,441	4,247	3,158	10,913	11,182	8,589	19,074
Beaver Creek	1,832	3,217	5,552	4,569	2,264	1,950	611	1,218	3,575	2,072	2,389
Alsea River	3,228	9,073	10,281	5,233	13,907	1,972	2,146	13,320	14,638	9,688	28,337
Siuslaw River	10,606	55,445	29,003	8,729	16,907	5,869	3,552	17,491	30,607	25,983	28,082
MC Dependents	816	5,308	1,852	8,179	246	1,468	546	3,910	1,610	2,548	4,487
Umpqua											
Lower Umpqua River	11,639	18,881	16,494	8,989	18,591	7,994	4,237	9,023	19,245	17,516	18,715
Middle Umpqua River	8,940	10,738	11,090	6,375	7,608	4,852	1,587	4,472	15,075	18,123	19,962
North Umpqua River	2,634	3,368	2,862	3,559	1,969	3,000	1,410	3,438	7,720	9,397	6,020
South Umpqua River	11,871	10,517	4,337	10,997	14,364	2,246	4,549	20,935	15,944	24,983	49,958
Lakes											
Siltcoos	5,104	4,636	6,628	7,998	4,364	5,452	1,447	3,873	5,197	7,678	6,354
Tahkenitch	3,510	3,480	3,188	3,496	1,897	3,611	3,551	2,604	2,977	10,681	6,644
Tenmile	10,990	13,861	6,260	7,148	8,464	15,064	3,957	17,131	9,175	20,385	7,284
Mid-South Coast											
Coos River	33,595	33,120	25,761	23,337	17,048	11,266	1,329	14,881	26,979	27,658	10,999
Coquille River	13,833	7,676	22,403	22,138	11,806	28,577	13,968	8,791	22,286	23,564	55,667
Floras Creek	5,664	3,272	952	7,446	506	1,104	340	786	3,203	11,329	9,217
Sixes River	95	95	86	403	105	294	97	43	176	92	334
MSC Dependents	n.a.	0	188	484	100						

Table B-4. Concluded.

Stratum and Population	2012	2013	2014	2015
North Coast				
Necanicum River	902	798	5,727	847
Nehalem River	2,963	4,539	30,577	3,079
Tillamook Bay	1,686	4,402	20,090	1,345
Nestucca River	1,751	946	6,369	1,029
NC Dependents	218	271	4,607	440
Mid-Coast				
Salmon River	297	1,165	3,680	332
Siletz River	4,495	7,660	19,496	2,216
Yaquina River	6,268	3,553	25,582	2,400
Beaver Creek	1,878	2,015	6,564	332
Alsea River	8,470	9,283	25,855	6,185
Siuslaw River	11,946	14,118	38,896	10,352
MC Dependents	492	1,929	1,890	856
Umpqua				
Lower Umpqua River	3,731	7,792	36,942	3,725
Middle Umpqua River	2,447	4,272	13,939	2,245
North Umpqua River	3,134	2,774	3,979	2,995
South Umpqua River	11,636	12,178	11,412	5,878
Lakes				
Siltcoos	3,945	3,797	7,178	1,558
Tahkenitch	5,675	3,413	3,691	1,085
Tenmile	9,302	6,449	11,141	2,086
Mid-South Coast				
Coos River	9,414	6,884	38,880	3,030
Coquille River	5,911	23,637	41,660	3,357
Floras Creek	2,502	1,936	1,022	1,585
Sixes River	34	567	410	168
MSC Dependents	48	32	105	0

APPENDIX C (SONCC COHO ESU)

Table C-1. Results of randomly selected spawning ground surveys for coho salmon in the Oregon portion of the SONCC Coho ESU, run year 2015. Estimates derived using GRTS protocol and are adjusted for visual observation bias. Estimates of wild spawners derived through application of carcass fin-mark observations. Missing values for populations indicate inadequate samples for determining total and/or wild abundance.

Monitoring area TRT Population	Survey effort number of		Adult coho salmon spawner abundance			
			Total		Wild	
	Surveys	Miles	Estimate	95\% CI	Estimate	95\% CI

South Coast

Note: Not sampled due to budget constraints.

Table C-2. Estimates of adult coho salmon run size in the Rogue River derived from Huntley Park seining and returns to Cole Rivers Hatchery, 1990 through 2015.

Year	Huntley Park seine		Cole Rivers Hatchery		Adult coho salmon run size			
	Fin-marks	Total	Adult returns	Adult finmarks (M)	Total		Wild	
	(R)	(C)			Estimate	95\% CI	Estimate	95\% CI
1990	,	58	452	103	3,363	4,581	3,109	4,404
1991	11	106	2,209	277	2,729	1,455	471	604
1992	4	91	1,338	168	3,422	2,917	2,224	2,352
1993	3	34	756	106	1,033	953	383	580
1994	91	173	6,590	5,564	11,577	1,624	4,364	997
1995	139	211	8,714	7,757	12,923	1,248	3,359	636
1996	204	362	7,921	6,940	13,520	1,221	4,824	729
1997	213	424	8,001	7,571	16,541	1,562	7,760	1,070
1998	79	165	2,921	2,387	5,451	860	2,257	553
1999	108	163	4,381	3,742	6,194	673	1,389	319
2000	194	505	9,224	7,389	21,094	2,321	10,978	1,675
2001	352	848	12,759	9,837	26,028	2,075	12,015	1,410
2002	323	706	11,599	8,831	21,199	1,699	8,460	1,073
2003	169	449	6,656	4,842	14,101	1,672	6,805	1,162
2004	259	1,260	8,289	6,297	33,601	3,639	24,509	3,108
2005	146	519	4,876	3,930	15,296	2,094	9,957	1,690
2006	175	458	3,188	2,581	7,407	859	3,911	624
2007	87	345	2,085	1,713	7,411	1,337	5,136	1,113
2008	19	107	148	95	572	226	414	192
2009	12	80	503	449	3,084	1,536	2,566	1,401
2010	13	142	730	393	4,423	2,201	3,671	2,005
2011	25	172	1,086	778	5,702	2,020	4,545	1,804
2012	36	202	1,322	1,142	6,897	2,010	5,474	1,790
2013	17	154	1,911	1,394	13,209	5,737	11,210	5,285
2014	19	91	784	639	3,238	1,255	2,409	1,083
2015	16	65	1,540	1,332	5,692	2,331	4,072	1,972

APPENDIX D

Table D-1. Site status of 2015 GRTS samples in the Lower Columbia River Coho ESU by TRT population. Target sites fell within coho salmon spawning habitat; response sites were successfully surveyed and non-response sites were not surveyed because of issues such as lack of landowner permission, site inaccessibility, or gaps in survey effort usually from stream turbidity. Non-target sites are outside of coho salmon spawning habitat. Average is for 2010 to 2014.

Stratum	Population	Target response				Target non-response				Non-target			
		2015	Avg.	Min	Max	2015	Avg.	Min	Max	2015	Avg.	Min	Max
Coast	Youngs Bay	0	11	0	22	0	2	0	8	0	4	0	6
	Big Creek	0	5	0	10	0	2	0	9	0	1	0	2
	Clatskanie	22	20	13	28	4	6	0	13	1	1	0	2
	Scappoose	13	18	15	24	18	13	10	16	0	1	0	3
	Total	35	53	39	75	22	23	14	35	1	7	2	11
Cascade	Clackamas	30	21	15	29	12	17	11	23	0	0	0	2
	Sandy	25	25	21	28	14	13	9	17	1	2	1	4
	Total	55	45	38	50	27	31	24	36	1	3	1	4
Gorge	Lower Gorge	3	3	1	4	3	2	0	4	0	0	0	0
	Hood	3	4	1	6	3	1	0	2	0	1	0	2
	Total	6	6	4	8	6	3	0	4	0	1	0	2
ESU Total		96	105	87	133	55	58	49	75	2	11	4	15

Table D-2. Site status of 2015 GRTS samples in the Southern Oregon/Northern California Coasts Coho ESU by TRT population. Target and Response categories as defined in Table D-1. Average is for 2006 to 2008.

Stratum	Population	Target response				Target non-response				Non-target			
		2015	Avg.	Min	Max	2015	Avg.	Min	Max	2015	Avg.	Min	Max
Coastal Subbasins	Elk River L. Rogue R. Chetco River Winchuck R. SC Depend.	0	1	0	1	0	0	0	0	0	0	0	0
		0	2	0	4	0	6	4	9	0	1	1	1
		0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Total	0	3	0	5	0	6	4	9	0	1	1	1
Interior Subbasins	Illinois River M. Rogue \& Applegate R. U. Rogue R.	0	3	3	4	0	13	9	16	0	3	1	4
		0	12	8	16	0	18	7	27	0	0	0	1
		0	9	5	14	0	14	3	20	0	0	0	1
	Total	0	24	22	25	0	45	19	60	0	3	2	5
ESU Total		0	27	24	30	0	51	28	64	0	4	3	6

Table D-3. Site status of 2015 GRTS samples in the Oregon Coast Coho ESU by TRT population. Target sites fell within coho salmon spawning habitat; response sites were successfully surveyed and non-response sites were not surveyed because of issues such as lack of landowner permission, site inaccessibility, or gaps in survey effort usually from stream turbidity. Non-target sites are outside of coho salmon spawning habitat. Average is for 2010 to 2014.

Stratum	Population	Target response				Target non-response				Non-target			
		2015	Avg.	Min	Max	2015	Avg.	Min	Max	2015	Avg.	Min	Max
North Coast	Necanicum Nehalem Tillamook Nestucca NC Depend.	18	16	11	21	3	7	1	11	2	5	3	8
		15	26	13	34	10	7	1	17	5	5	3	7
		22 *	23	14	31	3	11	9	15	5	13	6	20
		12	21	12	31	16	15	8	30	9	10	8	12
		6	17	9	21	2	4	2	8	3	15	12	17
	Total	73	103	59	131	34	44	23	66	24	48	42	57
MidCoast	Salmon Siletz Yaquina Beaver Alsea Siuslaw MC Depend.	9	13	7	17	11	14	8	22	0	5	2	7
		18	22	12	29	8	10	3	20	4	7	2	10
		19	21	10	27	7	14	8	21	3	10	1	13
		3	7	5	8	1	4	2	8	0	4	0	8
		18	26	11	32	9	8	5	13	1	8	1	11
		14	23	12	32	14	11	3	15	2	4	2	6
		7	16	11	20	3	15	6	21	0	17	1	25
	Total	88	128	78	158	53	76	41	103	10	53	9	74
Lakes	Siltcoos Tahkenitch Tenmile	0	13	0	21	0	9	0	21	0	12	10	16
		0	4	0	7	0	2	0	6	0	5	1	8
		0	12	0	18	0	10	0	14	0	5	2	7
	Total	0	29	0	44	0	21	0	40	0	23	18	27
Umpqua	L. Umpqua M. Umpqua N. Umpqua S. Umpqua	18	25	18	30	8	15	7	22	1	1	1	2
		15	20	14	28	12	20	11	29	1	4	1	6
		3	11	1	36	5	11	2	27	0	1	0	3
		19	25	17	30	8	16	11	23	2	9	1	13
	Total	55	81	51	116	33	62	43	78	4	15	3	21
MidSouth Coast	Coos Coquille Floras Sixes MS Depend.	21 *	27	18	35	2	11	3	22	1	5	2	7
		24*	24	15	34	15	20	11	33	1	2	0	6
		22 *	9	1	18	11	17	6	24	1	4	1	6
		3	9	1	19	16	11	6	18	0	1	0	2
		2 *	3	1	5	4	15	12	18	2	6	4	9
	Total	72	71	41	109	48	74	61	94	5	18	7	26
ESU Total		288	413	229	522	168	276	168	350	43	147	33	193

* = Unusually low numbers of surveys meeting the standard inclusion criteria resulted in an inadequate sample for calculating abundance estimates. An alternative method was used including all surveys actually sampled, comprising both peak counts and AUC calculations.

Table D-4. Adult coho salmon counts, density (AUC/mile), and marked proportion information for valid GRTS surveys by population in the Lower Columbia River and Oregon Coast Coho ESUs during the 2015 spawning year. Averages in italics do not include data for all years.

Location ESU / Stratum Population	Total Surveys	Survey Miles	Sample of marks * dead (live)	2015 Density	$2010-14$ Avg. Density	2015 \% Marked	
Lower Columbia River ESU							
Coastal Stratum							
Youngs Bay	0	--	--	--	5.7	--	61.8\%
Big Creek	0	--	--	--	10.3	--	72.7\%
Clatskanie River ${ }^{\text {a }}$	21	18.5	5 (31)	4.1	27.7	2.8\%	3.9\%
Plympton Creek	1	1.0	1 (3)	3.9	46.3	75.0\%	70.0\%
Scappoose Creek	13	9.9	2 (45)	7.5	13.5	0.0\%	0.0\%
Cascade Stratum							
Clackamas River ${ }^{\text {a }}$	21	20.6	7 (26)	2.3	23.1	3.2\%	13.8\%
Eagle Creek	9	10.7	17	6.6	40.9	75.5\%	87.9\%
Sandy River	25	23.3	7 (51)	3.3	25.8	5.2\%	9.2\%
Gorge Stratum							
Lower Gorge	3	1.4	0 (0)	9.5	102.6	37.5\%	35.0\%
Hood River	3	1.9	0 (3)	1.4	245.8	63.6\%	53.8\%
Oregon Coast ESU							
North Coast Stratum							
Necanicum River	18	11.9	3 (111)	12.1	57.6	0.0\%	0.7\%
Nehalem River	15	11.4	4 (49)	6.9	36.8	0.0\%	1.1\%
Tillamook Bay	22	17.2	4 (81)	8.0	54.5	1.2\%	1.9\%
Nestucca River	12	9.3	3 (22)	7.7	29.8	0.0\%	1.6\%
NC Dependents	6	3.5	1 (30)	11.9	42.9	0.0\%	0.7\%
Mid-Coast Stratum							
Salmon River	9	6.3	8 (10)	5.7	45.8	5.6\%	0.9\%
Siletz River	18	12.1	16	13.8	86.8	0.0\%	0.1\%
Yaquina River	19	10.5	11	13.2	97.3	0.0\%	0.0\%
Beaver Creek	3	1.7	1 (9)	21.3	206.6	0.0\%	0.0\%
Alsea River	18	13.7	30	23.1	58.2	0.0\%	0.1\%
Siuslaw River	14	9.7	11	14.0	40.1	0.0\%	1.1\%
MC Dependents	7	6.8	0 (12)	5.1	16.6	0.0\%	1.6\%
Lakes Stratum							
Siltcoos Lake	0	--	--	--	178.9	--	0.1\%
Tahkenitch Lake	0	--	--	--	341.7	--	0.1\%
Tenmile Lake	0	--	--	--	205.5	--	0.2\%
Mid-South Coast Str.							
Coos Bay	21	18.7	9 (140)	18.9	78.6	0.0\%	0.2\%
Coquille River	24	17.8	25	18.5	91.6	0.0\%	0.3\%
Floras Creek	22	20.8	36	17.0	145.4	0.0\%	0.0\%
Sixes River	3	1.6	0 (9)	4.9	11.3	0.0\%	0.0\%
MS Dependents	1	0.3	0 (0)	0.0	6.9	0.0\%	0.0\%
South Coast Stratum							
Lower Umpqua	18	11.7	3 (49)	8.2	47.9	0.0\%	0.1\%
Middle Umpqua	15	12.2	6 (29)	4.6	33.1	0.0\%	0.1\%
North Umpqua	3	2.1	0 (0)	0.0	15.5	0.0\%	1.7\%
South Umpqua	19	13.7	14	7.9	37.7	7.2\%	4.2\%

$\mathrm{a}=$ Stratified sampling. Results for population excluding the sub-area listed below.

* = Used carcass (i.e. dead) sample only if greater than 10 , otherwise use both live and dead sample.

Table D-5. Percent of selected GRTS sites classified "Target Non-Response" in three main categories. No AUC - Site surveyed, but didn't meet inclusion criteria for estimates. Denied - Sites not surveyed, lacked access permission. Inaccessible - Sites not surveyed, safety concerns or time required (greater than 3 hours). Average, minimum and maximum are for the period 2008 through 2014.

ESU	Strata	Population	No AUC				Denied				Inaccessible			
			2015	Avg.	Min.	Max.	2015	Avg.	Min.	Max.	2015	Avg.	Min.	Max.
LCR	Coastal	Youngs Bay	n.a.	8.2\%	0.0\%	24.1\%	a.	3.2\%	0.0\%	8.7\%	n.a	1.7\%	0.0\%	8.7\%
LCR	Coastal	Big Creek	n.a.	22.0\%	0.0\%	37.5\%	n.a	3.3\%	0.0\%	8.3\%	n.a	0.0\%	0.0\%	0.0\%
LCR	Coastal	Clatskanie River	11.1\%	15.2\%	0.0\%	42.3\%	3.7\%	3.9\%	0.0\%	8.3\%	0.0\%	2.3\%	0.0\%	4.5\%
LCR	Coastal	Scappoose Creek	12.9\%	10.4\%	3.4\%	13.8\%	45.2\%	19.6\%	10.3\%	30.3\%	0.0\%	1.3\%	0.0\%	5.7\%
LCR	Cascade	Clackamas River	9.5\%	28.3\%	10.5\%	37.8\%	16.7\%	10.0\%	2.9\%	25.6\%	0.0\%	1.1\%	0.0\%	7.5\%
LCR	Cascade	Sandy River	0.0\%	11.6\%	2.9\%	28.2\%	2.5\%	1.1\%	0.0\%	5.1\%	12.5\%	8.5\%	4.8\%	13.2\%
LCR	Gorge	Lower Gorge	0.0\%	4.8\%	0.0\%	33.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
LCR	Gorge	Hood River	0.0\%	0.0\%	0.0\%	0.0\%	16.7\%	0.0\%	0.0\%	0.0\%	0.0\%	2.0\%	0.0\%	14.3\%
OC	N Coast	Necanicum River	4.3\%	7.4\%	0.0\%	25.8\%	0.0\%	3.3\%	0.0\%	10.3\%	8.7\%	5.3\%	0.0\%	16.1\%
OC	N Coast	Nehalem River	26.7\%	26.6\%	0.0\%	66.7\%	3.3\%	1.1\%	0.0\%	5.1\%	3.3\%	2.5\%	0.0\%	5.6\%
OC	N Coast	Tillamook Bay	0.0\%	17.4\%	1.8\%	47.7\%	6.7\%	5.3\%	2.0\%	9.1\%	3.3\%	5.6\%	0.0\%	10.7\%
OC	N Coast	Nestucca River	29.7\%	19.3\%	4.2\%	35.3\%	8.1\%	6.6\%	2.1\%	12.5\%	5.4\%	6.2\%	2.6\%	10.4\%
OC	N Coast	NC Dependents	9.1\%	4.4\%	0.0\%	15.4\%	9.1\%	5.6\%	2.6\%	13.3\%	0.0\%	1.3\%	0.0\%	3.2\%
OC	Mid-Coast	Salmon River	25.0\%	17.7\%	0.0\%	37.5\%	10.0\%	6.8\%	0.0\%	11.5\%	20.0\%	17.1\%	0.0\%	31.0\%
OC	Mid-Coast	Siletz River	23.3\%	13.1\%	4.1\%	36.6\%	0.0\%	1.3\%	0.0\%	4.9\%	3.3\%	6.0\%	2.1\%	9.1\%
OC	Mid-Coast	Yaquina River	17.2\%	13.3\%	0.0\%	26.8\%	6.9\%	12.3\%	8.3\%	18.0\%	0.0\%	2.9\%	0.0\%	10.5\%
OC	Mid-Coast	Beaver Creek	25.0\%	15.1\%	0.0\%	35.7\%	0.0\%	7.7\%	0.0\%	16.7\%	0.0\%	0.0\%	0.0\%	0.0\%
OC	Mid-Coast	Alsea River	14.3\%	7.2\%	0.0\%	15.0\%	10.7\%	14.4\%	8.5\%	23.5\%	0.0\%	0.9\%	0.0\%	2.5\%
OC	Mid-Coast	Siuslaw River	20.0\%	17.3\%	0.0\%	51.3\%	13.3\%	5.9\%	2.4\%	9.5\%	6.7\%	5.9\%	4.3\%	9.5\%
OC	Mid-Coast	MC Dependents	20.0\%	12.9\%	2.0\%	21.8\%	10.0\%	9.7\%	3.6\%	22.2\%	0.0\%	3.3\%	0.0\%	6.1\%
OC	Lakes	Siltcoos Lake	n.a.	3.8\%	0.0\%	20.0\%	n.a.	19.2\%	11.1\%	36.4\%	n.	6.5\%	3.0\%	11.1\%
OC	Lakes	Tahkenitch Lake	n.a	6.3\%	0.0\%	30.8\%	n.	5.5\%	0.0\%	15.4\%	n.a	0.0\%	0.0\%	0.0\%
OC	Lakes	Tenmile Lake	n.a.	3.3\%	0.0\%	13.3\%	n.a.	28.9\%	18.2\%	43.3\%	n.a.	7.7\%	2.6\%	15.2\%
OC	Mid-S Coast	Coos Bay	0.0\%	15.7\%	0.0\%	62.2\%	8.3\%	9.3\%	4.7\%	14.0\%	0.0\%	3.1\%	0.0\%	6.7\%
OC	Mid-S Coast	Coquille River	0.0\%	13.3\%	0.0\%	36.7\%	22.5\%	23.0\%	14.8\%	28.3\%	15.0\%	6.8\%	1.9\%	10.6\%
OC	Mid-S Coast	Floras Creek	0.0\%	24.8\%	0.0\%	51.9\%	29.4\%	25.5\%	17.2\%	31.0\%	2.9\%	4.0\%	3.4\%	6.1\%
OC	Mid-S Coast	Sixes River	57.9\%	25.9\%	0.0\%	63.2\%	15.8\%	17.3\%	5.0\%	26.3\%	10.5\%	7.1\%	0.0\%	11.8\%
OC	Mid-S Coast	MS Dependents	12.5\%	3.4\%	0.0\%	9.5\%	50.0\%	54.3\%	40.9\%	65.4\%	0.0\%	0.6\%	0.0\%	4.5\%
OC	Umpqua	Lower Umpqua	7.4\%	16.8\%	7.7\%	40.5\%	7.4\%	6.8\%	2.4\%	10.9\%	14.8\%	10.7\%	8.7\%	13.0\%
OC	Umpqua	Middle Umpqua	17.9\%	20.4\%	7.7\%	34.1\%	17.9\%	15.9\%	7.7\%	25.9\%	0.0\%	0.8\%	0.0\%	5.3\%
OC	Umpqua	North Umpqua	0.0\%	29.0\%	0.0\%	80.0\%	25.0\%	10.6\%	0.0\%	30.0\%	0.0\%	4.5\%	0.0\%	12.2\%
OC	Umpqua	South Umpqua	10.3\%	11.7\%	0.0\%	33.3\%	17.2\%	13.8\%	8.5\%	17.6\%	0.0\%	6.2\%	2.4\%	8.5\%

[^0]: * = Sampled only Medium and High quality habitat, except in the Umpqua where all habitat was sampled.

[^1]: * = Does not include data for the Youngs Bay and Big Creek Populations. These populations were not sampled, 2013 through 2015 run years.

[^2]: -- = Too few sites and/or too few samples for determining rearing origin to calculate metrics.

[^3]: n.a. = Not available (no surveys were selected in the population, less than 2 surveys stayed in rotation, or the abundance estimate was 0).

 * = Unusually low numbers of surveys meeting the standard inclusion criteria resulted in an inadequate sample for calculating abundance estimates. An alternative method was used including all surveys actually sampled, comprising both peak counts and AUC calculations.
 \# = The base monitoring survey goal in Salmon River is 5, but was increased to 15 as part of an ODFW research project.

[^4]: * = Unusually low numbers of surveys meeting the standard inclusion criteria resulted in an inadequate sample for calculating abundance

[^5]: $a=$ Sandy Hatchery count through 2009 is number released above Marmot Dam, which was removed in 2006. Beginning in 2010, Sandy Hatchery releases the fish above the hatchery weir on Cedar Creek.
 n.a. $=$ Not Applicable. Marmot dam was removed in 2006 and Powerdale Dam was removed in 2010, so there are no longer any dam counts.

[^6]: * = Updated in 2015 to reflect stratified abundance estimation. Plympton Creek estimated separately from the rest of the Clatskanie population.

[^7]: 1 = Estimate of adult coho salmon observed in GRTS surveys below Winchester Dam (Sutherlin Creek and tributaries).
 2 = Counts of adult coho salmon by mark type (marked =hatchery, unmarked = wild) at Winchester Dam on the North Umpqua River.
 3 = Estimated freshwater harvest of coho salmon in the North Umpqua basin above Winchester Dam based on Angler Harvest Cards (see: http://www.dfw.state.or.us/resources/fishing/sportcatch.asp). Selective harvest of mark coho salmon began in 2004.
 4 = Number of adult coho salmon collected (at Rock Creek and at Winchester Dam) and retained at Rock Creek Hatchery. These numbers do not include coho salmon collected and released alive back into the wild.

